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Proof
A proof of a theorem is a sequence of statements which
demonstrates that the theorem is a logical consequence of
prior results .
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Proof
A proof of a theorem is a sequence of statements which
demonstrates that the theorem is a logical consequence of
prior results .

The sequence of statements uses logic to combine the prior
results, and the end result is a proof.
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Placeholders
Symbols that refer not to a specific entity, but to any one of
a collection are called placeholders or dummy variables
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Placeholders
Symbols that refer not to a specific entity, but to any one of
a collection are called placeholders or dummy variables

The letters a and b are placeholders in the expression

(x − a)(x − b) = 0
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Logical Connectives
In logic we are concerned with the truth or falsehood of
statements. It is common to build up compound statements
or sentences using logical connectives .

Preview of Proof – p.4/4



Logical Connectives
In logic we are concerned with the truth or falsehood of
statements. It is common to build up compound statements
or sentences using logical connectives .

The five basic logical connectives and their symbols are:
not ∼

and ∧

or ∨

if-then ⇒

if and only if ⇔

Preview of Proof – p.4/4



Generalizations
A generalization is an assertion that something is always
true.
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Generalizations
A generalization is an assertion that something is always
true.

The statement
x2

≥ 0

is a generalization because it asserts that, for any real
number x, x2 ≥ 0
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Generalizations
A generalization is an assertion that something is always
true.

The statement
x2

≥ 0

is a generalization because it asserts that, for any real
number x, x2 ≥ 0

This becomes clear if we write it as

for every x ∈ R, x2
≥ 0
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Generalizations
A generalization is an assertion that something is always
true.

The statement
x2

≥ 0

is a generalization because it asserts that, for any real
number x, x2 ≥ 0

This becomes clear if we write it as

for every x ∈ R, x2
≥ 0

A generalization implicitly contains a statement like "for all"
or "for every".
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Identities
An identity is an equation containing variables that is true
regardless of the values given to the variables.
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Identities
An identity is an equation containing variables that is true
regardless of the values given to the variables.

The following is an identity:

(x + 1)2 = x2 + 2x + 1

is a generalization because it asserts that, for any real
number x, x2 ≥ 0
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Identities
An identity is an equation containing variables that is true
regardless of the values given to the variables.
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Identities
An identity is an equation containing variables that is true
regardless of the values given to the variables.

The following is an identity:

(x + 1)2 = x2 + 2x + 1

is a generalization because it asserts that, for any real
number x, x2 ≥ 0
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Counterexamples
A counterexample to a generalization is an example that
demonstrates the falsehood of the generality.
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Counterexamples
A counterexample to a generalization is an example that
demonstrates the falsehood of the generality.

The generalization
x2 > 4

is false by counterexample since 12 = 1 < 4.
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Existence Statements
An existence statement asserts the existence of
something.
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Existence Statements
An existence statement asserts the existence of
something.

There exists a real number x such that x2 = 0
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Quantifiers
A quantifier is a phrase that quantifies a generalization or
existence statement.
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Quantifiers
A quantifier is a phrase that quantifies a generalization or
existence statement.

Two quantifiers are for all and there exists
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Translation
A theorem is often stated using terms that have been
previously defined.
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Translation
A theorem is often stated using terms that have been
previously defined.

Translation refers to the process of replacing those terms
with their definitions, and is usually one of the first steps in
a proof.
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Form
The form of a compound sentence is a symbolic
representation of the sentence where the component
sentences are replaced by letters and the logical
connectives are exhibited.
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Form
The form of a compound sentence is a symbolic
representation of the sentence where the component
sentences are replaced by letters and the logical
connectives are exhibited.

Converting to a logical form makes it easier to reorganize a
proof.
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