Preview of Proof

Gene Quinn

Proof

A **proof** of a theorem is a sequence of statements which demonstrates that the theorem is a logical consequence of **prior results**.

Proof

A **proof** of a theorem is a sequence of statements which demonstrates that the theorem is a logical consequence of **prior results**.

The sequence of statements uses logic to combine the prior results, and the end result is a proof.

Placeholders

Symbols that refer not to a specific entity, but to any one of a collection are called **placeholders** or **dummy variables**

Placeholders

Symbols that refer not to a specific entity, but to any one of a collection are called **placeholders** or **dummy variables**

The letters *a* and *b* are placeholders in the expression

$$(x-a)(x-b) = 0$$

Logical Connectives

In logic we are concerned with the truth or falsehood of statements. It is common to build up compound statements or sentences using **logical connectives**.

Logical Connectives

In logic we are concerned with the truth or falsehood of statements. It is common to build up compound statements or sentences using **logical connectives**.

The five basic logical connectives and their symbols are:

not	\sim
and	\wedge
or	\vee
if-then	\Rightarrow
f and only if	\Leftrightarrow

A generalization is an assertion that something is always true.

A generalization is an assertion that something is always true.

The statement

 $x^2 \ge 0$

is a generalization because it asserts that, for any real number $x,\,x^2\geq 0$

A generalization is an assertion that something is always true.

The statement

 $x^2 \ge 0$

is a generalization because it asserts that, for any real number x , $x^2 \geq 0$

This becomes clear if we write it as

for every $x \in \mathbb{R}, \ x^2 \ge 0$

A generalization is an assertion that something is always true.

The statement

 $x^2 \ge 0$

is a generalization because it asserts that, for any real number x , $x^2 \geq 0$

This becomes clear if we write it as

for every
$$x \in \mathbb{R}, \ x^2 \ge 0$$

A generalization implicitly contains a statement like "for all" or "for every".

An **identity** is an **equation** containing variables that is true regardless of the values given to the variables.

An **identity** is an **equation** containing variables that is true regardless of the values given to the variables.

The following is an identity:

$$(x+1)^2 = x^2 + 2x + 1$$

is a generalization because it asserts that, for any real number $x,\,x^2\geq 0$

An **identity** is an **equation** containing variables that is true regardless of the values given to the variables.

An **identity** is an **equation** containing variables that is true regardless of the values given to the variables.

The following is an identity:

$$(x+1)^2 = x^2 + 2x + 1$$

is a generalization because it asserts that, for any real number $x,\,x^2\geq 0$

Counterexamples

A **counterexample** to a generalization is an example that demonstrates the falsehood of the generality.

Counterexamples

A **counterexample** to a generalization is an example that demonstrates the falsehood of the generality.

The generalization

 $x^2 > 4$

is false by counterexample since $1^2 = 1 < 4$.

Existence Statements

An **existence statement** asserts the existence of something.

Existence Statements

An **existence statement** asserts the existence of something.

There exists a real number x such that $x^2 = 0$

Quantifiers

A **quantifier** is a phrase that quantifies a generalization or existence statement.

Quantifiers

A **quantifier** is a phrase that quantifies a generalization or existence statement.

Two quantifiers are for all and there exists

Translation

A theorem is often stated using terms that have been previously defined.

Translation

A theorem is often stated using terms that have been previously defined.

Translation refers to the process of replacing those terms with their definitions, and is usually one of the first steps in a proof.

Form

The **form** of a compound sentence is a symbolic representation of the sentence where the component sentences are replaced by letters and the logical connectives are exhibited.

Form

The **form** of a compound sentence is a symbolic representation of the sentence where the component sentences are replaced by letters and the logical connectives are exhibited.

Converting to a logical form makes it easier to reorganize a proof.