OPEN AND CLOSED SETS IN \mathbb{R}

1. BASIC DEFINITIONS AND THEOREMS

A central idea in topology is the notion of an open set. We will define an open set and some related terms as they appear in the context of \mathbb{R} with the usual *metric*, or measure of distance

$$d(x,y) = |x-y|$$

Although it suffices as an introduction to the basic ideas in topology, we will not discuss the algebraic properties required for a more thorough introduction to the subject. The subset we will discuss is sometimes called *point-set* topology.

Definition 1 (topology). A **topology** on a set X is a collection \mathcal{T} of subsets of X that has the following properties:

- (1) \emptyset and X are in \mathcal{T}
- (2) The union of any subcollection of elements of \mathcal{T} is in \mathcal{T}
- (3) The intersection of any *finite* subcollection of the elements of \mathcal{T} is in \mathcal{T}

A set X for which a topology \mathcal{T} has been specified is called a **topological space**.

We will take the set X to be \mathbb{R} . Now we proceed to define an ϵ -neighborhood of a point, which we will use to define an open set. We will show that the open sets that satisfy the definition form a topology on \mathbb{R} .

Definition 2 (ϵ neighborhood). Given $a \in \mathbb{R}$, an ϵ -neighborhood $V_{\epsilon}(a)$ is the set

$$V_{\epsilon}(a) = \{ x \in \mathbb{R} : |x - a| < \epsilon \}$$

Note that |x - a| is strictly less than ϵ , so an ϵ neighborhood is just an open interval centered at a with radius ϵ .

Definition 3 (open set). The set $E \subseteq \mathbb{R}$ is **open** if every point $a \in E$ has an ϵ neighborhood that is contained in E:

$$V_{\epsilon}(a) \subseteq E$$
 for some $\epsilon > 0$

As noted earlier, the collection \mathcal{T} of sets that satisfy this definition of an open set is a topology on \mathbb{R} .

Note that $E = \mathbb{R}$ is open, and $E = \emptyset$ is open vacuously.

Also, any interval of the form (a, b) with $a, b \in \mathbb{R}$ and a < b is open.

Theorem 1. Every interval of the form (a, b) with $a, b \in \mathbb{R}$ and a < b is open.

Proof. The interval (a, b) is the same as the set $\{x \in \mathbb{R} : a < x < b\}$. Choose any element $c \in (a, b)$. Then a < c < b. Choose ϵ to be the smaller of c - a and b - c, that is, take ϵ to be the distance to the closer of a and b. Then the interval $(c - \epsilon, c + \epsilon)$ is contained in (a, b). \Box

The union of any collection of open sets (finite, countable, or uncountable) is also open, as is the intersection of a *finite* number of open sets.

Theorem 2. The union of an arbitrary collection of open sets is open.

Proof. Let I be an index set and suppose

$$S = \bigcup_{\alpha \in I} E_{\alpha}$$

Given an arbitrary element $s \in S$, we have to show that there is an ϵ neighborhood $V_{\epsilon}(s)$ that is contained in S. Let $\epsilon > 0$ be given and let $s \in S$ be an arbitrary element of S. Because s is in the union of the E_{α} , it is in at least one of them, call it E_s . By hypothesis, E_s is open, so by definition there is an ϵ neighborhood $V_{\epsilon}(s)$ that is entirely contained in E_s . But if $V_{\epsilon}(s)$ is contained in E_s , by the definition of set union it is also contained in the union of the E_{α} , which is S. Therefore, S is open.

Now we consider the intersection of a collection of open sets. As it turns out, we can only guarantee that the intersection will be open if the collection is **finite**.

Theorem 3. The intersection of a finite collection of open sets is open.

Proof. Let $\{E_1, E_2, \ldots, E_n\}$ be a finite collection of open sets. Let a be an arbitrary element of the intersection:

$$a \in \bigcap_{i=1}^{n} E_i$$

Then by definition $a \in E_i$ for i = 1, 2, ..., n. Since each E_i is open, for each E_i there exists an ϵ -neighborhood $V_{\epsilon_i}(a)$ of a that is contained in E_i . To show that the intersection is open, we have to find a single ϵ -neighborhood that is contained in **all** of the E_i . Now the ϵ -neighborhoods are open intervals centered at a, so if we take ϵ to be the smallest of the ϵ_i :

$$\epsilon = \min\{\epsilon_1, \epsilon_2, \dots, \epsilon_n\}$$

then

$$V_{\epsilon}(a) \subseteq V_{\epsilon_i}$$
 for all i

 \mathbf{SO}

$$V_{\epsilon}(a) \subseteq \bigcap_{i=1}^{n} E_i$$

Since a was an arbitrary choice, we can find such an ϵ -neighborhood for any a in the intersection, so by definition the intersection is open. \Box

Together with the assertion that \mathbb{R} and \emptyset are open, the previous two theorems establish that the collection of open sets \mathcal{T} we defined is a topology on \mathbb{R} .

There are a great many collections of subsets of \mathbb{R} that qualify as topologies on \mathbb{R} , such as the collection consisting only of \mathbb{R} and the empty set. Because of the way this one arises naturally from the metric d(x, y) = |x - y|, it is called the *metric topology* on \mathbb{R} with the usual metric.

Definition 4 (limit point). A point x is a **limit point** of a set E if every ϵ -neighborhood of x intersects E in some point other than x, that is,

$$V_{\epsilon} \cap E \setminus x \neq \emptyset \quad \forall \epsilon > 0$$

Example 1. 0 is a limit point of E = (0, 1) because every ϵ -neighborhood $V_{\epsilon}(0)$ of zero contains the point $\epsilon/2 \in E$, and $\epsilon/2 \neq 0$.

Definition 5 (isoated point). A point x is an **isolated point** of a set E if it is not a limit point of E.

Example 2. Every element z of \mathbb{Z} is an isolated point, because if we choose $\epsilon < 1/2$, there are no elements of \mathbb{Z} in $V_{\epsilon}(z)$ other than z itself.

Definition 6 (closed set). A set E is said to be **closed** if it contains all of its limit points.

Definition 7 (closure of a set). The closure of a set E is the union of E and the set containing all of its limit points.

Example 3. C = [0, 1] is the closure of E = (0, 1).

Definition 8 (compliment of a set). The **compliment** of a set E (relative to \mathbb{R}) is the set of all real numbers that do not belong to E, that is,

$$E^c = \{ x \in \mathbb{R} : x \notin E \} = \mathbb{R} \setminus E$$

Remark 1. Note that the properties of being open or closed are not mutually exclusive. A set can be open, closed, neither open nor closed, or both open and closed. For example, \mathbb{R} is both open and closed. The half-open interval E = (0, 1] is neither open nor closed, because 0 is a limit point of E that does not belong to E, and there are no ϵ -neighborhoods of 1 that are entirely contained in E.

Theorem 4. A point x is a limit point of a set E if and only if there exists a sequence $a_n \in E$ such that $a_n \neq x$ for all $n \in \mathbb{N}$ and $a_n \to x$ as $n \to \infty$.

Theorem 5. A set E is open if and only if its compliment E^c is closed. A set F is closed if and only if its compliment F^c is open.

Theorem 6. The intersection of an arbitrary collection of closed sets is closed. The union of a *finite* collection of closed sets is closed.

Definition 9 (F_{σ}) . A set *E* is called an F_{σ} set if it can be represented as a countable union of closed sets.

Definition 10 (G_{δ}) . A set *E* is called a G_{δ} set if it can be represented as a countable intersection of open sets.