
OPEN AND CLOSED SETS IN R

1. Basic Definitions and Theorems

A central idea in topology is the notion of an open set. We will define
an open set and some related terms as they appear in the context of R

with the usual metric, or measure of distance

d(x, y) = |x − y|

Although it suffices as an introduction to the basic ideas in topology, we
will not discuss the algebraic properties required for a more thorough
introduction to the subject. The subset we will discuss is sometimes
called point-set topology.

Definition 1 (topology). A topology on a set X is a collection T of
subsets of X that has the following properties:

(1) ∅ and X are in T
(2) The union of any subcollection of elements of T is in T
(3) The intersection of any finite subcollection of the elements of T is in T

A set X for which a topology T has been specified is called a topo-

logical space.

We will take the set X to be R. Now we proceed to define an ǫ-
neighborhood of a point, which we will use to define an open set. We
will show that the open sets that satisfy the definition form a topology
on R.

Definition 2 (ǫ neighborhood). Given a ∈ R, an ǫ-neighborhood Vǫ(a)
is the set

Vǫ(a) = {x ∈ R : |x − a| < ǫ}

Note that |x− a| is strictly less than ǫ, so an ǫ neighborhood is just
an open interval centered at a with radius ǫ.

Definition 3 (open set). The set E ⊆ R is open if every point a ∈ E
has an ǫ neighborhood that is contained in E:

Vǫ(a) ⊆ E for some ǫ > 0
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As noted earlier, the collection T of sets that satisfy this definition
of an open set is a topology on R.

Note that E = R is open, and E = ∅ is open vacuously.

Also, any interval of the form (a, b) with a, b ∈ R and a < b is open.

Theorem 1. Every interval of the form (a, b) with a, b ∈ R and a < b is
open.

Proof. The interval (a, b) is the same as the set {x ∈ R : a < x < b}.
Choose any element c ∈ (a, b). Then a < c < b. Choose ǫ to be the
smaller of c−a and b−c, that is, take ǫ to be the distance to the closer
of a and b. Then the interval (c − ǫ, c + ǫ) is contained in (a, b). �

The union of any collection of open sets (finite, countable, or un-
countable) is also open, as is the intersection of a finite number of
open sets.

Theorem 2. The union of an arbitrary collection of open sets is open.

Proof. Let I be an index set and suppose

S =
⋃

α∈I

Eα

Given an arbitrary element s ∈ S, we have to show that there is an
ǫ neighborhood Vǫ(s) that is contained in S. Let ǫ > 0 be given and
let s ∈ S be an arbitrary element of S. Because s is in the union of
the Eα, it is in at least one of them, call it Es. By hypothesis, Es is
open, so by definition there is an ǫ neighborhood Vǫ(s) that is entirely
contained in Es. But if Vǫ(s) is contained in Es, by the definition of set
union it is also contained in the union of the Eα, which is S. Therefore,
S is open. �

Now we consider the intersection of a collection of open sets. As it
turns out, we can only guarantee that the intersection will be open if
the collection is finite.

Theorem 3. The intersection of a finite collection of open sets is open.

Proof. Let {E1, E2, . . . , En} be a finite collection of open sets. Let a
be an arbitrary element of the intersection:

a ∈
n⋂

i=1

Ei
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Then by definition a ∈ Ei for i = 1, 2, . . . , n. Since each Ei is open,
for each Ei there exists an ǫ-neighborhood Vǫi

(a) of a that is con-
tained in Ei. To show that the intersection is open, we have to find
a single ǫ-neighborhood that is contained in all of the Ei. Now the
ǫ-neighborhoods are open intervals centered at a, so if we take ǫ to be
the smallest of the ǫi:

ǫ = min{ǫ1, ǫ2, . . . , ǫn}

then
Vǫ(a) ⊆ Vǫi

for all i

so

Vǫ(a) ⊆
n⋂

i−1

Ei

Since a was an arbitrary choice, we can find such an ǫ-neighborhood for
any a in the intersection, so by definition the intersection is open. �

Together with the assertion that R and ∅ are open, the previous two
theorems establish that the collection of open sets T we defined is a
topology on R.

There are a great many collections of subsets of R that qualify as
topologies on R, such as the collection consisting only of R and the
empty set. Because of the way this one arises naturally from the metric
d(x, y) = |x − y|, it is called the metric topology on R with the usual
metric.

Definition 4 (limit point). A point x is a limit point of a set E if every
ǫ-neighborhood of x intersects E in some point other than x, that is,

Vǫ ∩ E \ x 6= ∅ ∀ǫ > 0

Example 1. 0 is a limit point of E = (0, 1) because every ǫ-neighborhood
Vǫ(0) of zero contains the point ǫ/2 ∈ E, and ǫ/2 6= 0.

Definition 5 (isoated point). A point x is an isolated point of a set
E if it is not a limit point of E.

Example 2. Every element z of Z is an isolated point, because if we
choose ǫ < 1/2, there are no elements of Z in Vǫ(z) other than z itself.
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Definition 6 (closed set). A set E is said to be closed if it contains all
of its limit points.

Definition 7 (closure of a set). The closure of a set E is the union of
E and the set containing all of its limit points.

Example 3. C = [0, 1] is the closure of E = (0, 1).

Definition 8 (compliment of a set). The compliment of a set E (rel-
ative to R) is the set of all real numbers that do not belong to E, that
is,

Ec = {x ∈ R : x /∈ E} = R \ E

Remark 1. Note that the properties of being open or closed are not
mutually exclusive. A set can be open, closed, neither open nor closed,
or both open and closed. For example, R is both open and closed.
The half-open interval E = (0, 1] is neither open nor closed, because
0 is a limit point of E that does not belong to E, and there are no
ǫ-neighborhoods of 1 that are entirely contained in E.

Theorem 4. A point x is a limit point of a set E if and only if there
exists a sequence an ∈ E such that an 6= x for all n ∈ N and an → x as
n → ∞.

Theorem 5. A set E is open if and only if its compliment Ec is closed.
A set F is closed if and only if its compliment F c is open.

Theorem 6. The intersection of an arbitrary collection of closed sets is
closed. The union of a finite collection of closed sets is closed.

Definition 9 (Fσ). A set E is called an Fσ set if it can be represented
as a countable union of closed sets.

Definition 10 (Gδ). A set E is called a Gδ set if it can be represented
as a countable intersection of open sets.


