1. LIMIT SUPERIOR

Lemma. Suppose x_n is an increasing sequence in \mathbb{R} . Then there is an extended real number x such that

$$x_n \to x$$
 as $n \to \infty$

Proof. By hypothesis, $\{x_n\}$ is increasing. It must be that either x_n is bounded above, or it is not. If it is bounded above, then by the Monotone Convergence Theorem there is an $x \in \mathbb{R}$ such that $x_n \to x$ as $n \to \infty$. Now suppose x_n is not bounded above. Then for any $M \in \mathbb{N}$, there is an $N \in \mathbb{N}$ such that $x_N > M$. By hypothesis, x_n is increasing, so we may write

$$x_n \ge x_N > M$$
 for all $n \ge N$
so by definition, $x_n \to \infty$ as $n \to \infty$.

Definition (limit supremum). Let $\{x_n\}$ be a real sequence. Then the limit supremum or limit superior of $\{x_n\}$ is the extended real number

$$\limsup_{n \to \infty} x_n := \lim_{n \to \infty} \left(\sup_{k \ge n} x_k \right)$$

The limit infimum or limit inferior of $\{x_n\}$ is the extended real number

$$\liminf_{n \to \infty} x_n := \lim_{n \to \infty} \left(\inf_{k \ge n} x_k \right)$$

In Theorem 2.37, the author proves that $\limsup_{n\to\infty} x_n$ is the **largest** subsequential limit of $\{x_n\}$, and $\liminf_{n\to\infty} x_n$ is the **smallest** subsequential limit of $\{x_n\}$.

That is, we can find a subsequence x_{n_k} that converges to $\limsup x_n$ and another subsequence x_{n_j} that converges to $\liminf x_n$, and every other convergent subsequence has the property that

$$\liminf_{n \to \infty} x_n \le \lim_{k \to \infty} x_{n_k} \le \limsup_{n \to \infty} x_n$$

Recall that if a sequence $\{x\}$ converges to a limt x, then every subsequence converges to x. This means that

Theorem (Theorem 2.36).

$$\lim_{n \to \infty} x_n = x \quad if and only if \quad \limsup_{n \to \infty} x_n = x = \liminf_{n \to \infty} x_n$$