LIMITS (CONTINUED)

1. LIMIT DEFINITIONS SUMMARY

1.1. Two-sided limits. The two-sided limit definition

$$\lim_{x \to a} f(x) = L$$

requires that the function be defined on either side of a, and intentionally says nothing about the existence or value of f(a). The existence of f on both sides of a is ensured by requiring that a is an element of some open interval I, so that a has to be an interior point of the interval, and the fact that f is required to exist at all points of I except possibly a.

Definition 1 (two-sided limit). Let $a \in I \subseteq I$ where I is an open interval, and let f be a function defined on I except possibly at a. Then we say f converges to L as x approaches a and write

$$\lim_{x \to a} f(x) = I$$

if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - a| < \delta$

1.2. Left and right hand limits. The two one-sided limits make use of an open interval like the two-sided limit, but now the function f is required to be defined at all points of I and a is taken to be one of the endpoints. Since the endpoint is not part of the open interval, the definition says nothing about the existence or value of f(a).

Definition 2 (right-hand limit). Let $I \subset \mathbb{R}$ be an open interval with left endpoint a, and let f be a function defined on I except possibly at a. Then we say f converges to L as x approaches a from the right and write

$$\lim_{x \to a^+} f(x) = L$$

if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that

 $|f(x) - L| < \epsilon$ whenever $a + \delta \in I$ and $a < x < a + \delta$

Definition 3 (left-hand limit). Let $I \subset \mathbb{R}$ be an open interval with right endpoint a, and let f be a function defined on I except possibly at a. Then we say f converges to L as x approaches a from the left and write

$$\lim_{x \to a^-} f(x) = L$$

if and only if for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $a - \delta \in I$ and $a - \delta < x < a$

1.3. Limits at $\pm\infty$. For the limits as $x \to \pm\infty$, we require that f be defined on an open interval of the form (c,∞) or $(-\infty, -c)$ that is contained in the domain of f.

Definition 4 (limit as $x \to \infty$). Suppose there is a c > 0 such that f is defined on (c, ∞) . Then we say f converges to L as x approaches ∞ and write

$$\lim_{x \to \infty} f(x) = L$$

if and only if for every $\epsilon > 0$, there exists an M such that

$$|f(x) - L| < \epsilon$$
 whenever $x > M$

Definition 5 (limit as $x \to -\infty$). Suppose there is a c > 0 such that f is defined on $(-\infty, -c)$. Then we say f converges to L as x approaches $-\infty$ and write

$$\lim_{x \to -\infty} f(x) = L$$

if and only if for every $\epsilon > 0$, there exists an M such that

 $|f(x) - L| < \epsilon$ whenever x < M

1.4. convergence to $\pm \infty$. As with the two-sided limit, we require $a \in I \subseteq \mathbb{R}$ that f be defined on $I \setminus \{a\}$.

Definition 6 (convergence to ∞). Suppose $a \in I \subseteq \mathbb{R}$ and f is defined on $I \setminus \{a\}$. Then we say f converges to ∞ as x approaches a and write

$$\lim_{x \to a} f(x) = \infty$$

if and only if for every $M \in \mathbb{R} > 0$, there exists a $\delta > 0$ such that

$$f(x) > M$$
 whenever $0 < |x - a| < \delta$

Definition 7 (convergence to $-\infty$). Suppose $a \in I \subseteq \mathbb{R}$ and f is defined on $I \setminus \{a\}$. Then we say f converges to $-\infty$ as x approaches a and write

$$\lim_{x \to a} f(x) = -\infty$$

if and only if for every $M \in \mathbb{R} > 0$, there exists a $\delta > 0$ such that

$$f(x) < M$$
 whenever $0 < |x - a| < \delta$

1.5. sequential definition of a limit. The