LIMITS (CONTINUED)

1. Limit Definitions Summary

1.1. Two-sided limits. The two-sided limit definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

requires that the function be defined on either side of a, and intentionally says nothing about the existence or value of $f(a)$. The existence of f on both sides of a is ensured by requiring that a is an element of some open interval I, so that a has to be an interior point of the interval, and the fact that f is required to exist at all points of I except possibly a.
Definition 1 (two-sided limit). Let $a \in I \subseteq I$ where I is an open interval, and let f be a function defined on I except possibly at a. Then we say f converges to L as x approaches a and write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if and only if for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad 0<|x-a|<\delta
$$

1.2. Left and right hand limits. The two one-sided limits make use of an open interval like the two-sided limit, but now the function f is required to be defined at all points of I and a is taken to be one of the endpoints. Since the endpoint is not part of the open interval, the definition says nothing about the existence or value of $f(a)$.

Definition 2 (right-hand limit). Let $I \subset \mathbb{R}$ be an open interval with left endpoint a, and let f be a function defined on I except possibly at a. Then we say f converges to L as x approaches a from the right and write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if and only if for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad a+\delta \in I \quad \text { and } a<x<a+\delta
$$

Definition 3 (left-hand limit). Let $I \subset \mathbb{R}$ be an open interval with right endpoint a, and let f be a function defined on I except possibly at a. Then we say f converges to L as x approaches a from the left and write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if and only if for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad a-\delta \in I \quad \text { and } a-\delta<x<a
$$

1.3. Limits at $\pm \infty$. For the limits as $x \rightarrow \pm \infty$, we require that f be defined on an open interval of the form (c, ∞) or $(-\infty,-c)$ that is contained in the domain of f.

Definition 4 (limit as $x \rightarrow \infty$). Suppose there is a $c>0$ such that f is defined on (c, ∞). Then we say f converges to L as x approaches ∞ and write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if and only if for every $\epsilon>0$, there exists an M such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad x>M
$$

Definition 5 (limit as $x \rightarrow-\infty$). Suppose there is a $c>0$ such that f is defined on $(-\infty,-c)$. Then we say f converges to L as x approaches $-\infty$ and write

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if and only if for every $\epsilon>0$, there exists an M such that

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad x<M
$$

1.4. convergence to $\pm \infty$. As with the two-sided limit, we require $a \in I \subseteq \mathbb{R}$ that f be defined on $I \backslash\{a\}$.

Definition 6 (convergence to ∞). Suppose $a \in I \subseteq \mathbb{R}$ and f is defined on $I \backslash\{a\}$. Then we say f converges to ∞ as x approaches a and write

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

if and only if for every $M \in \mathbb{R}>0$, there exists a $\delta>0$ such that

$$
f(x)>M \quad \text { whenever } \quad 0<|x-a|<\delta
$$

Definition 7 (convergence to $-\infty$). Suppose $a \in I \subseteq \mathbb{R}$ and f is defined on $I \backslash\{a\}$. Then we say f converges to $-\infty$ as x approaches a and write

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

if and only if for every $M \in \mathbb{R}>0$, there exists a $\delta>0$ such that

$$
f(x)<M \quad \text { whenever } \quad 0<|x-a|<\delta
$$

1.5. sequential definition of a limit. The

