1. Two-Sided Limits

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a real-valued function. We now give a precise definition of the statement

$$
\lim _{x \rightarrow a} f(x)=a
$$

As we will see, the definition has a similar style to the "challengeresponse" definition of the limit of a sequence: we suppose we are given an $\epsilon>0$, and our challenge is to find $N \in \mathbb{N}$ so that

$$
\left|x_{n}-x\right|<\epsilon \quad \text { whenever } \quad n \geq N
$$

Definition (limit of a function). Let $I \subseteq \mathbb{R}$ be an open interval and $a \in I$. Suppose f is a real-valued function defined everywhere on I with the possible exception of a. Then we say that $f(x)$ converges to L as x approaches a, and write

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { or } \quad f(x) \rightarrow L \quad \text { as } \quad x \rightarrow a
$$

if and only if, for every $\epsilon>0$, there is $a \delta>0$ (which generally depends on ϵ, f, I, and a) such that

$$
0<|x-a|<\epsilon \quad \text { implies that } \quad|f(x)-L|<\epsilon
$$

A couple of things should be noted about this definition.
First, no assumptions are made about the existence of $f(a)$. It may exist or may not, but in any case it plays no role in the definition of the limit of f as $x \rightarrow a$.

Second, the requirement that f be defined on an open interval containing a means that $|f(x)-L|$ must be less than some specified ϵ for x within δ of a on either side of a. Because an open interval does not include its endpoints, if $a \in I$, we can always choose δ small enough that $(a-\delta, a+\delta) \subset I$. This guarantees that f is defined on $(a-\delta, a+\delta)$, with the possible exception of a.

Example. Suppose $f(x)=3 x+5$ for $x \in(-1,1)$. Use the definition of a function limit to show that $f(x) \rightarrow 5$ as $x \rightarrow 0$.
Proof. Let $\epsilon>0$ be given. We need to find a $\delta>0$ such that

$$
|f(x)-5|<\epsilon \quad \text { whenever } \quad|x-0|<\delta
$$

First note that

$$
|f(x)-5|=|3 x+5-5|=|3 x|
$$

We need to show that, regardless of how small an ϵ we are given, we can find a δ that guarantees $f(x)$ is within ϵ of L whenever x is within δ of a. The usual way to do this is to find a function

$$
f_{\delta}(\epsilon)=\delta
$$

that takes the given ϵ and produces a δ that meets the requirements of the definition of a limit.

This means we want to turn the inequality

$$
|f(x)-L|<\epsilon
$$

into an inequality of the form

$$
|x-a|<\delta
$$

In this case, $f(x)=3 x+5$, and $L=5$, so we are starting with

$$
|3 x+5-5|<\epsilon
$$

we can simplify this to

$$
|3 x|<\epsilon \quad \Rightarrow \quad-\epsilon<3 x<\epsilon
$$

dividing all terms by 3 gives

$$
-\frac{\epsilon}{3}<x<\frac{\epsilon}{3}
$$

which we can write as

$$
-\frac{\epsilon}{3}<x-0<\frac{\epsilon}{3} \quad \text { or } \quad|x-0|<\frac{\epsilon}{3}
$$

So, given $\epsilon>0$, choose $\delta=\frac{\epsilon}{3}$. Then, working in the other direction, if $|x-0|<\epsilon / 3$,

$$
|x-0|=|x|<\frac{\epsilon}{3} \quad \Rightarrow \quad-\frac{\epsilon}{3}<x<\frac{\epsilon}{3}
$$

so, multiplying all terms by 3 , we get

$$
-\epsilon<3 x<\epsilon \quad \Rightarrow \quad|3 x|=|3 x+5-5|=|f(x)-5|<\epsilon
$$

Because $\epsilon / 3$ is defined for any $\epsilon>0$, we can always find a $\delta=\epsilon / 3$ that guarantees

$$
|f(x)-5|<\epsilon \quad \text { whenever } \quad|x|<\delta=\frac{\epsilon}{3}
$$

So, we can say that $\lim _{x \rightarrow 0} f(x)=5$

This example and any linear function are easy, because it is easy to convert the inequality involving $|f(x)-L|$ into one involving $|x-a|$. In general, it is not this easy and considerable ingenuity may be required to show that the definition holds.

2. Sequential Characterization of Limits

Theorem (3.6 sequential characterization of limits). Let $I \subseteq \mathbb{R}$ be an open interval and $a \in I$, and let f be a real-valued function defined on I except possibly at a. Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

if and only if for every sequence $x_{n} \in I \backslash\{a\}$ that converges to a, $\left\{f\left(x_{n}\right)\right\} \rightarrow L$ as $n \rightarrow \infty$.

