
CONTINUITY AND UNIFORM CONTINUITY

1. Continuity

Definition 1 (continuity at a point). Suppose f : E → R is a real-
valued function defined on E. Then f is said to be continuous at

the point a ∈ E if and only if given ǫ > 0, there is a δ > 0 such that

|x − a| < δ and x ∈ E imply |f(x) − f(a)| < ǫ

Definition 2 (continuity on a set). f is said to be continuous on E if
and only if f is continuous at every x ∈ E.

Some remarks on this definition are in order.

Note that this definition does not say that limx→a f(x) = f(a). The
author is apparently trying to handle situations like f(x) =

√
x which

is continuous at x = 0 according to this definition, because we only
require |f(x) − f(a)| < ǫ when |x − a| < δ for values of x in E ⊆ R.

This avoids having to define ”continuous from the left” and ”contin-
uous from the right”, using the left and right hand limits. Not all texts
use this definition.

The following definition applies when there are no issues with the
existence of two-sided limits:

Theorem 1. Let I be an open interval, a ∈ I, and f : I → R. Then f
is continuous at a if and only if

lim
x→a

f(x) = f(a)

As with function limits, there is a sequential characterization of con-
tinuity:

Theorem 2. Suppose a ∈ E ⊆ R and f : E → R. The following
statements are equivalent:

i) f is continuous at a
ii) If {xn} converges to a and xn ∈ E ∀n ∈ N then f(xn) → f(a) as n → ∞
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2. Intermediate Value Theorem

Theorem 3 (intermediate value theorem). Suppose a < b and f :
[a, b] → R is continuous. If y0 lies between f(a) and f(b), then there is
an x0 ∈ (a, b) such that f(x0) = y0.

3. Uniform Continuity

Definition 3 (uniform continuity). Let E ⊆ R be a nonempty set and
f : E → R. Then f is said to be uniformly continuous if and only
if for every ǫ > 0 there exists a δ > 0 such that

|x − a| < δ and x, a ∈ E implies |f(x) − f(a)| < ǫ

The difference between uniform and ordinary convergence is that
in uniform convergence, δ does not depend on x or a. Regardless of
which x, a ∈ E we choose, as long as |x − a| < δ, we are guaranteed
that |f(x) − f(a)| < ǫ.

Lemma 1. Suppose e ⊆ R and f : E → R is uniformly continuous. If
{xn} ∈ E is Cauchy, then {f(xn)} is Cauchy.

Proof. Let ǫ > 0 be given. By hypothesis, f is uniformly continuous
on E, so there exists a δ such that

|f(x) − f(a)| < ǫ whenever |x − a| < δ ∀x, a ∈ E

Also by hypothesis, xn is Cauchy, so we can treat δ as the given ǫ and
so there exists an N ∈ N such that

|xn − xm| < δ whenever n, m > N

Now let xm = a, so whenever n, m > N ,

|xn−xm| < δ which implies |f(xn)−f(xm)| < ǫ whenever n, m > N

so {f(xn)} is Cauchy. �

Theorem 4. Suppose I is a closed bounded interval. If f : I → R is
continuous on I, then f is uniformly continuous on I.

We will prove this theorem using a proof by contradiction of the
contrapositive: If f is not uniformly continuous on I, then it is not
continuous on I. We will suppose that f is not uniformly continuous
on I but f is continuous on I, and try to obtain a contradiction. To
get a definition of ”not uniformly continuous” we negate the definition
of uniform continuity to obtain:
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f : E → R is not uniformly continuous on I if there exists an ǫ0 > 0
such that for every δ > 0 we can find two points x, y ∈ I with the
property that

|x − y| < δ and |f(x) − f(y)| > ǫ0

Since we can find two such points for any δ > 0, we first choose δ = 1.
Then we are guaranteed the existence of x1, y1 ∈ I such that |x1−y1| <
1 and |f(x1) − f(x2)| > ǫ0. Next, choose δ = 1/2. As before, we are
guaranteed the existence of x2, y2 ∈ I such that |x2 − y2| < 1/2 and
|f(x2) − f(y2)| > ǫ0.

δ = 1 ∃x1, y1 ∈ E such that |x1 − y1| < 1 and |f(x1) − f(y1)| > ǫ0

δ = 1/2 ∃x2, y2 ∈ E such that |x2 − y2| < 1/2 and |f(x2) − f(y2)| > ǫ0

...
...

δ = 1/n ∃xn, yn ∈ E such that |xn − yn| < 1/n and |f(xn) − f(yn)| > ǫ0

Proof. Suppose without loss of generality that f : [a, b] → R is continu-
ous, but not uniformly continuous on the closed interval I = [a, b] ⊆ R

with a < b. By hypothesis, f is not uniformly continuous on I. Then
by definition, there exists an ǫ0 such that for every δ > 0 we can find
two points x, y ∈ I such that

|x − y| < δ and |f(x) − f(y)| > ǫ0

So we can set δ = 1 and find x1, y1 ∈ E such that |x1 − y1| < 1 and
|f(x1)− f(y1)| > ǫ0. Then we can set δ = 1/2 and find x2, y2 ∈ E such
that |x2 − y2| < 1/2 and |f(x2) − f(y2)| > ǫ0.

Continuing in this fashion, we choose δ = 1/3, 1/4, 1/5, . . . and pro-
duce two sequences xn and yn with the property that, for each n ∈ N,

xn, yn ∈ I, |xn − yn| <
1

n
and |f(xn) − f(yn)| > ǫ0

Because I is bounded and xn, yn ∈ I for all n ∈ N, xn and yn are
bounded and, by the Bolzano-Weierstrass theorem, there exists a con-
vergent subsequence xni

→ x. Because

a ≤ xn ≤ b ∀n ∈ N

it is also true that

a ≤ xni
≤ b ∀i ∈ N

and therefore by the comparison theorem

a ≤ x ≤ b ∀i ∈ N

so x ∈ I and f(x) is defined.
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Corresponding to xni
, there is a subsequence yni

with the property
that |xni

− yni
| < 1/ni. Consequently we can choose an N1 ∈ N such

that
|xni

− yni
| <

ǫ

2
whenever i ≥ N1

Since xni
→ x, there is an N2 such that

|xni
− x| <

ǫ

2
whenever i ≥ N2

Let N be the larger of N1 and N2. Then when i ≥ N ,

|yni
− x| < |yni

− xni
| + |xni

− x| <
ǫ

2
+

ǫ

2
= ǫ

so yni
→ x also. By hypothesis f is continuous on I, and we have

established that x ∈ I, so f is continuous at x, and by the sequential
characteriztion of continuity (3.21 ii),

f(xni
) → f(x) and f(yni

→ f(x)

so
|f(yni

) − f(xni
)| → 0 as i → ∞

which contradicts the hypothesis that

|f(xn) − f(yn)| > ǫ0 ∀n ∈ N

�

Theorem 5. Suppose a < b and f : (a, b) → R. Then f is uniformly
continuous on (a, b) if and only if f can be continuously extended to
[a, b], that is, if and only if there is a continuous function g on [a, b]
with the property that:

f(x) = g(x), x ∈ (a, b)


