
THE CANTOR SET

1. The Cantor Set

This section describes a set known as the Cantor Set because its
construction is due to George Cantor. The Cantor set exhibits a num-
ber of remarkable properties, some of them quite counterintuitive.

1.1. Construction. To construct the Cantor set, we start with the
closed interval C0 = [0, 1] and remove the open interval representing
the middle third of the set:

C1 = C0 \

(

1

3
,
2

3

)

so that

C1 =

[

0,
1

3

]

∪

[

2

3
, 1

]

Now construct C2 by removing the open intervals representing the mid-
dle third of each of the two parts of C1:

C2 = C1 \

{(

1

9
,
2

9

)

∪

(

7

9
,
8

9

)}

So

C2 =

(

0,
1

9

)

∪

(

2

9
,
1

3

)

∪

(

2

3
,
7

9

)

∪

(

8

9
, 1

)

Now continue the process inductively, that is, construct C3 from C2,
C4 from C3, and so on, each time removing the open middle third of
each interval in Cn to product Cn+1.

The result is a sequence of sets C0, C1, C2, . . . in which Cn is the
union of 2n closed intervals, each with length 1/3n. Now define the
Cantor set to be the intersection of this collection:

C =

∞
⋂

n=0

Cn

The Cantor set is the set of numbers that remains after the inductive
process of removing the middle thirds of the intervals in the previous
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2 THE CANTOR SET

step. It is not obvious what is left (if anything), but consider the fact
that as we discard an open interval representing the middle third of
each closed interval, the endpoints of the original interval are always
retained. So 0 and 1 belong to C0 and carry forward to C1. They are
also endpoints of intervals in C1, so they carry forward to C2, and so
on, so we can say that at the very least, C contains every one of the
endpoints of the closed intervals we produced during its construction.
Therefore, not only is the Cantor set not empty, but it is at least
countably infinite.

Now consider whether the Cantor set contains anything else. We
started with the interval [0, 1] which has length 1, and discarded one
interval of length 1/3, two intervals of length 1/9, four intervals of
length 1/27, and, in general,

2n−1 intervals of length
1

3n

The combined lengths of the discarded intervals is

L =

∞
∑

n=1

2n−1

3n
=

1

3

∞
∑

n=0

(

2

3

)n

=
1

3

(

1

1 − 2

3

)

= 1

So the total length of the discarded intervals is one, meaning that the
Cantor set has zero length. All of this suggests a rather sparse collection
consisting of the interval endpoints and not much else.

However, we can present an argument that C is actually uncountable.
Suppose we construct an index an for each element x ∈ C as follows:
Since C is the intersection of all of the Ci, any point in C belongs to
all of them. Starting with C1, define

a1 =

{

0 if x is in the left half of C1

1 if x is in the right half of C1

To create C2, each half of C1 is split into thirds, and the open middle
third discarded. Consequently, if x belongs to, say, the left half of C1,
then when we form C2 it must belong to either the left or the right
half of the left half of C1. So again we have two choices, and we will
define, in this case,

a2 =

{

0 if x is in the left half of the left half ofC1

1 if x is in the right half of the left halfC1

We continue in this fashion to define a3, a4, a5 . . . either zero or one
depending on whether x lies in the left or right half of its previous
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interval when that interval is divided. As a result, we end up with
a sequence an of zeros and ones for each point in C. Because the
endpoints are always retained, we know that none of the closed intervals
we generate are empty, so there should be at least one point of C
belonging to every closed interval in the sequence of nested intervals
designated by the sequence of zeros and ones an.

So, we expect there are at least as many points in C as there are
infinite sequences of zeros and ones. However, the number of sequences
of zeros and ones is uncountable. To prove this, consider Cantor’s
diagonalization argument (Remark 1.39 on page 36 in the text), with
the decimal sequences replaced by binary sequences. We construct a
sequence not in the list by taking the kth digit of the sequence under
construction to be different from the kth digit of the kth sequence in
the list.

So we have the remarkable conclusion that although C has length 0,
it is uncountable.

In addition, note that since the endpoints of C0, zero and one, are
rational, all of the other endpoints are rational, which means that the
set of endpoints is a subset of the rationals Q, and therefore is at most

countable. So, the vast majority of the points in C belong to C minus
the set of endpoints or C \ {endpoints}, which is uncountable.

Finally, we add that although C contains far more than the endpoints
of the intervals, it does not contain any intervals. To show this, suppose
some interval I = [a, b] ⊆ C where a, b ∈ [0, 1] and a < b. Then every
point in I belongs to every one of the Cn, which means I ⊆ Cn for all
n ∈ N. Suppose ǫ > 0 is the length of I = b − a. The length of the
intervals in Cn is 1/3n, so by taking n large enough that

n > log3

(

1

ǫ

)

we have that Cn is shorter than I, which it supposedly contains. The
contradiction shows that C does not contain any intervals.


