1. ASSIGNMENT 4

1.1. Problem 1. (1.2.5 a) Prove that

$$
\text { if } a>2 \text { and } b=1+\sqrt{a-1}, \quad \text { then } 2<b<a
$$

Hint: Equation (6) on page 9 may be useful.
1.2. Problem 2. (1.3.6 a,b) Prove the approximation and completeness properties for infima:
a) If $E \subset \mathbb{R}$ has a finite infimum and $\epsilon>0$ is any positive number, then there is a point $a \in E$ such that

$$
\inf E+\epsilon>a \geq \inf E
$$

b) If $E \subseteq \mathbb{R}$ in nonempty and bounded below, then E has a (finite) infimum.
1.3. Problem 3. (1.4.1 a) Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a recursively generated sequence that for a given initial value x_{1} is defined by the formula

$$
x_{n+1}=1+\sqrt{x_{n}-1}, \quad n=1,2,3, \ldots
$$

(i.e., we have to be given x_{1}, then we use the recursion formula to calculate x_{2}, then x_{3}, and so on).

Show that if $x_{1}>2$, then

$$
2<x_{n+1}<x_{n} \quad \forall n \in \mathbb{N}
$$

1.4. Problem 4. (based on 1.6 .0 b) A dyadic rational is a real number $x \in \mathbb{R}$ such that

$$
x=\frac{n}{2^{m}} \quad \text { for some } \quad n \in \mathbb{Z} \quad \text { and } \quad m \in \mathbb{N}
$$

Prove that the set of all dyadic rationals is not uncountable.

