\wedge	The AND connective
\vee	The OR connective
	The NEGATION or NOT connective
\sim , \vdash	Belongs to or is an element of
d d	Does not belong to or is not an element of
⊊ Ø	
\mathbb{V}	The empty or null set Set minus
∈ ¢ \ ∀	"For every" or "for all"
∨ ⊐	There exists
\Rightarrow	The CONDITIONAL or "If-then" statement
\rightarrow	The BICONDITIONAL or "If and only if" statement
$\stackrel{\smile}{A} \subseteq B, \ A \subset B$	A is a subset of B
$A \subseteq D, A \subset D$ A^c	The compliment of the set A
$A \cup B$	The union of A and B
$A \cap B$	The intersection of A and B
$A \times B$	The Cartesian product of A and B
$A \Delta B$	The symmetric difference of A and B
	The power set of A
$\frac{P(A)}{A}$	The closure of A
A°	The interior of A
∂A	The boundary of A
$A \sim B$	A and B have the same cardinality
\aleph_0	The cardinality of \mathbb{N} , read "Aleph null"
\aleph_1	The cardinality of \mathbb{R} (2 ^{\aleph_0}), read "Aleph one"
\mathbf{C}	The set of continuous functions
\mathbf{C}^1	The set of differentiable functions
\mathbf{C}^2	The set of twice differentiable functions
\mathbf{C}^∞	The set of infinitely differentiable functions
C	The Cantor set
F_{σ}	A countable union of closed sets
G_{δ}	A countable intersection of open sets
\mathbb{C}	The complex numbers
iff	Abbreviation for "if and only if"
f[A]	The image of the set A under f
$f^{-1}[A]$	The inverse image of the set A under f
$f \circ g$	The composition of f and g
f A	The restriction of f to A
I	The irrational numbers
\mathbb{N}	The natural numbers $\{1, 2, 3, \ldots\}$
Q	The rational numbers
\mathbb{R}	The real numbers: $(-\infty, \infty)$
\mathbb{R}^+	The positive real numbers: $(0, \infty)$
$\sup_{\cdot \in C}$	The supremum or least upper bound
inf	The infimum or greatest lower bound
U 77	The universal set $\begin{bmatrix} 1 & 1 & 0 & 1 & 2 \end{bmatrix}$
\mathbb{Z}	The integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$