
1. Recursive Sequences

A number of problems in the text deal with sequences (xn) defined
by a recursion formula and an initial value,

xn+1 = f(xn), n = 1, 2, 3, . . . with x1 = a

Systems of this type are known as difference equations, discrete dy-
namical systems, or iterated function systems, among other names.

1.1. Limits of Recursive Sequences. A recursion formula together
with an initial value will always produce a unique sequence. One of
the questions that arises naturally is that of convergence. Does the
resulting sequence converge? If so, how do I find its limit?

One approach would be to use the recursion formula to derive a
formula for the nth term in the sequence, and take the limit of this
expression as n → ∞. Unfortunately, if f is nonlinear, it is usually
impossible to find a closed expression for the nth term, because the
expression simply gets more complicated algebraically with each suc-
cessive term. Most often, some alternative method has to be used.

One approach is to take limits of both sides of the recursion formula
as n → ∞. For example, suppose we are given

xn+1 =
1

2 − xn

with x1 =
1

4

and asked to find the limit of the resulting sequence (to 4 decimal
places),

1

4
,

1

2 − 1

4

, . . . = .25, .5714, .7, .7692, .8125, .8421, .8636, . . .

Intuitively, the sequence appears to be converging, so perhaps the limit
exists. Of course, we have to justify this conclusion with a rigorous
argument. If we take the limits of both sides of the recursion formula,
the result is:

lim xn+1 = lim

(

1

2 − xn

)

=
1

2 − lim xn

For the moment, let’s set aside the question of whether these limits
exist and naively assume that they do, and write

lim xn = L1 and lim xn+1 = L2



2

By substitution, we get

lim xn+1 =
1

2 − lim xn

⇒ L2 = 1

Rearranging algebraically, we get

−L1L2 + 2L2 − 1 = 0

Now it seems plausible that lim xn and lim xn+1 should be the same,
because except at the very beginning, the two sequences consist of
exactly the same numbers, just labeled differently.

As usual, we have to justify our intuition with a rigorous argument,
so consider the following:

Lemma 1. If a sequence is defined recursively by

xn+1 = f(xn), n = 1, 2, 3, . . . with x1 = a

and

lim xn = L exists, then lim xn+1 exists and is equal to L

(Naturally, the proof is left as an exercise. The generated sequence
is:

(xn) = x1, x2, x3, x4, x5, . . .

while the sequence (xn+1) is

(xn+1) = x2, x3, x4, x5, . . .

which is a subsequence of the original sequence. Apply theorem 2.5.2).

Now, returning to our equation for the limits of our sample sequence,

−L1L2 + 2L2 − 1 = 0

in view of the preceding lemma, we can assume that if they exist, L1

and L2 are the same, so we can write the equation as:

−L2

1 + 2L1 − 1 = 0 ⇒ L1 =
−2 ±

√
0

−2
= 1

so we conclude that

lim xn = 1

which is not at all obvious from the recursion formula, but agrees with
the numerical results for the first few terms.
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1.2. Existence of Limits of Recursive Sequences. In the preced-
ing section, we proved that if the recursive sequence

xn+1 =
1

2 − xn

, n = 1, 2, 3, . . . , x1 =
1

4

converges, then

lim xn = 1

That is, we started with the assumption that the limit exists, and then
proceeded to show that if it exists, it has to be 1.

We have not established that the limit exists. Exhibiting numerical
values for the first few elements of the sequence might give some idea
whether the sequence converges, but it can never prove that it con-
verges, nor can it determine what the limit is.

There is no general method for determining whether a nonlinear recur-
sive sequence of this type converges or not. One method that works
for some sequences is the following: if the sequence can be shown to
be bounded and monotonic, then the Monotone Convergence Theorem
guarantees that it converges.

Claim: The sequence

xn+1 =
1

2 − xn

, n = 1, 2, 3, . . . , x1 =
1

4

is bounded and monotonic.

Proof. First we will prove that this sequence is monotonic (increasing).
The proof will be by induction, so we consider a sequence of proposi-
tions of the form:

p(1) : x2 > x1

p(2) : x3 > x2

p(3) : x4 > x3

...
...

...
p(n) : xn+1 > xn

p(n + 1) : xn+2 > xn+1

...
...

...

There are two parts to an induction proof. First, we must prove that
p(1) is true. Second, we must show that p(n) ⇒ p(n + 1), that is, we
assume that p(n) is true and try to show that this implies that p(n+1)
is true.



4

We establish p(1) by computation,

x2 =
1

2 − x1

=
1

2 − 1

4

=
4

7
>

1

4
= x1

Now assume that p(n) is true, that is, suppose

xn+1 > xn

Then

−xn+1 < −xn

and

2 − xn+1 < 2 − xn

and finally,

1

2 − xn+1

<
1

2 − xn

or by substitution, xn+2 < xn+1

Since p(1) is true, and p(n) ⇒ p(n + 1), by the principle of induction
p(k) is true for every k ∈ N.

Next, we establish that (xn) is bounded.

We know that (xn) is increasing, so x1 is the smallest element in the
sequence, and the sequence is bounded below by x1 = 1/4.

All that remains is to show that (xn) is bounded above. Again, the
proof is by induction. This time, the sequence of propositions is:

p(1) : x1 < 1
p(2) : x2 < 1
p(3) : x3 < 1
...

...
...

p(n) : xn < 1
p(n + 1) : xn+1 < 1
...

...
...

Clearly, p(1) is true, because

x1 =
1

4
< 1

Now suppose that

xn < 1

Then

−xn > −1
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and
2 − xn > 2 − 1 = 1

so
1

2 − xn

<
1

1
= 1

and by substitution
xn+1 < 1

Since p(1) is true and p(n) ⇒ p(n + 1), by the principle of induction
p(k) is true for every k ∈ N. �

This establishes that (xn) is bounded and monotonic, so by the
Monotone Convergence Theorem, (xn) converges, and in the preced-
ing section we proved that, if (xn) converges, then

lim xn = 1


