
1. Negation

Definition 1 (negation). A proposition is a negation of the proposition
A if and only if it is logically equivalent to ∼ A (”not A”).

The truth table for a statement A and its negation ∼ A is:

A ∼ A
T F
F T

The definition requires that the negation be true when the proposition
is false, and vice versa.

Equivalently, with this definition it is impossible for a proposition and
its negation to be both true, or both false.

If we consider the proposition

A: Smith is the fastest runner on the team,

among the possible ways to negate this statement are:

Smith is not the fastest runner on the team

Some members of the team are faster than Smith

At least one member of the team is faster than Smith

The proposition

Today is Monday

is not the negation of the proposition

Today is Tuesday

because on Wednesday, both are false.

It is always possible to negate a proposition A by prefacing it with
the phrase ”It is not the case that A”, but these trivial negations are
seldom useful.
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2. Negation of the Conditional

The negation of the conditional statement,

∼ (H ⇒ C)

is logically equivalent to
H ∧ (∼ C)

Recall that
H ⇒ C ≡ (∼ H) ∨ C

If we negate both sides of this equivalence, we get

∼ (H ⇒ C) ≡ ∼ ((∼ H) ∨ C)

Using the DeMorgan law, we get the result:

∼ (H ⇒ C) ≡ ∼ ((∼ H) ∨ C) ≡ (∼ (∼ H)∧ ∼ C) ≡ H ∧ (∼ C)

Note that the negation of a conditional statement is not a conditional
statement.

The following truth table illustrates the fact that H ∧ (∼ C) and (∼
H) ∨ C are negations of H ⇒ C: the truth values in columns for the
first two are the exact opposite of those for the third.

H C ∼ H ∼ C H ⇒ C H ∧ (∼ C)
T T F F T F
T F F T F T
F T T F T F
F F T T T F

Example 1. Suppose A is the statement

If today is Tuesday, then we have class [H ⇒ C]

The following statement is a negation of A:

Today is Tuesday and we do not have class [H ∧ (∼ C)]

Example 2. Suppose A is the statement

If x ∈ S then x ∈ T [H ⇒ C]

The following statement is a negation of A:

(x ∈ S) ∧ (x /∈ T ) [H ∧ (∼ C)]
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Example 3. The following statement is often used to define the set of
rational numbers Q using the set of integers Z:

If x ∈ Q then ∃p, q ∈ Z ∋ x =
p

q
[H ⇒ C]

This is a conditional or if-then statement with hypothesis or antecedent

x ∈ Q

and conclusion or consequent

∃p, q ∈ Z ∋ x =
p

q

(read ”there exist integers p and q such that x = p/q”).

The following statement is a negation:

(x ∈ Q)∧ ∼ (∃p, q ∈ Z ∋ x =
p

q
) [H ∧ (∼ C)]

This might be read as ”x is a rational number but there is no pair
integers p, q with x = p

q
”.

Example 4. To prove a conditional statement false, we could show that
its negation is true.

Proving the statement

H(x) ⇒ C(x)

to be false is the same as showing

H(x)∧ ∼ C(x)

is true.

3. Negation of a Generalization

The negation of a generalization is an existence statement.

Example 5. The negation of the statement

For every x ∈ A, x ≤ 5

is

There exists an x ∈ A ∋ x > 5
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In general, if x is a variable and S(x) is an open sentence with that
variable,

The negation of

For all x, S(x)

is logically equivalent to

There exists an x such that ∼ S(x)

As a variation we have that the negation of

For all x ∈ T, S(x)

is logically equivalent to

There exists an x ∈ T such that ∼ S(x)

The element x ∈ T such that ∼ S(x) is called a counterexample to
the generalization. A single counterexample is sufficient to establish
that a generalization is false.

To prove a conditional statement false, we could show that its nega-
tion is true.

Example 6. Generalizations often contain conditional statements. The
following form is particularly common:

∀ x, H(x) ⇒ C(x)

(read ”For all x, if H(x) then C(x)” or possibly ”For all x, C(x) when-
ever H(x)”).

Negating this generalization results in the existence statement

∃ x ∋ ∼ (H(x) ⇒ C(x))

(read ”There exists an x such that H(x) does not imply C(x)” or ”For
some x, H(x) does not imply C(x)”).

We can use the result on negation of the conditional to write this as:

∃ x ∋ H(x)∧ ∼ (C(x))

(read ”There exists an x with H(x) and not C(x)” or ”For some x,
H(x) and not C(x)”).
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4. Negation of an Existence Statement

The negation of an existence statement is a generalization.

Example 7. The negation of the statement

There exists an x ∈ R such that x2 < 0

is

For every x ∈ R, x2 ≥ 0

In general, if x is a variable and S(x) is an open sentence with that
variable,

The negation of

There exists an x such that S(x)

is logically equivalent to

For all x, ∼ S(x)

As before, we have that the negation of

There exists an x ∈ T, such that S(x)

is logically equivalent to

For all x ∈ T ,∼ S(x)

The element x ∈ T such that S(x) is called an example. A single
example is sufficient to establish that an existence statement is true.

Example 8. The negation of the statement

∃x ∈ R ∋ x2 < 0

(”There exists a real number x such that x2 < 0”)

is

∀x ∈ R ∼ (x2 < 0)

(”For every real number x, x2 is not less than 0”)

which could also be written as

∀x ∈ R x2 ≥ 0
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5. More Complicated Negations

It is possible to have nested quantifiers. In fact, they are fairly
common in statements like the ǫ−δ definition of the limit of a function:
We say that limx→a f(x) = L if and only if

For every ǫ > 0 there exists a δ > 0 such that |x−a| < δ ⇒ |f(x)−L| < ǫ

To negate this type of sentence, reverse the quantifiers and add not

to the rightmost sentence:

∼ [∀ǫ∃δ S(ǫ, δ)] is equivalent to ∃ǫ∀δ ∼ S(ǫ, δ)

or

∼ [∀x ∈ S∃y ∈ T S(ǫ, δ)] is equivalent to ∃x ∈ S∀y ∈ T ∼ S(x, y)

If the existential quantifier appears before the universal quantifier,

∼ [∃ǫ∀δ S(ǫ, δ)] is equivalent to ∀ǫ∃δ ∼ S(ǫ, δ)

or

∼ [∃x ∈ S∀y ∈ T S(ǫ, δ)] is equivalent to ∀x ∈ S∃y ∈ T ∼ S(x, y)


