
THE FUNDAMENTAL THEOREM OF CALCULUS

1. The Fundamental Theorem of Calculus

Theorem 1 (Fundamental Theorem of Calculus (part 1)). If f : [a, b] →
R is integrable and

F : [a, b] → R satisfies F ′(x) = f(x) on [a, b]

then ∫
b

a

f(x)dx = F (b) − F (a)

Proof. Let P be a partition of [a, b]. By hypothesis, F ′(x) = f(x) on
[a, b], so F is differentiable on [a, b] and therefore continuous on [a, b].

Consequently, f is also continuous on each subinterval [xk−1, xk] of
P so by the Mean Value Theorem, there exists a point tk ∈ (xk−1, xk)
such that

F (xk) − F (xk−1)

xk − xk−1

= F ′(tk) = f(tk)

and so
F (xk) − F (xk−1) = f(tk)(xk − xk−1)

Now in each subinterval, let

mk(f) = inf{f(x) : x ∈ (xk−1, xk)}

and
Mk(f) = sup{f(x) : x ∈ (xk−1, xk)}

then
mk(f) ≤ f(tk) ≤ Mk(f)

and

mk(f)(xk − xk−1) ≤ f(tk)(xk − xk−1) ≤ Mk(f)(xk − xk−1)

so
n∑

k=1

mk(f)(xk−xk−1) ≤

n∑
k=1

f(tk)(xk−xk−1) ≤

n∑
k=1

Mk(f)(xk−xk−1)
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but
n∑

k=1

mk(f)(xk−xk−1) = L(f, P ) and
n∑

k=1

Mk(f)(xk−xk−1) = U(f, P )

therefore

L(f, P ) ≤
n∑

k=1

f(tk)(xk − xk−1) ≤ U(f, P )

By substitution, the middle entry can be written as
n∑

k=1

f(tk)(xk − xk−1) =
n∑

k=1

F (xk) − F (xk−1)

= (F (x1) − F (a)) + (F (x2) − F (x1)) + · · ·

· · · + (F (xn−1) − F (xn−2)) + (F (b) − F (xn−1))

= F (b) − F (a)

and we can write

L(f, P ) ≤ F (b) − F (a) ≤ U(f, P )

independent of the choice of P . Taking limits as ‖P‖ → 0, by Theorem
5.18 ∫

b

a

f(x)dx ≤ F (b) − F (a) ≤

∫
b

a

f(x)dx

so by the squeeze theorem∫
b

a

f(x)dx = F (b) − F (a)

�

Theorem 2 (Fundamental Theorem of Calculus (part 2)). If f : [a, b] →
R is continuous and

G(x) =

∫
x

a

f(t)dt

then G is continuous on [a, b]. If f is continuous on [a, b], then G is
differentiable on [a, b] and

G′(x) = f(x)

If f is continuous at x = c, then G is differentiable at x = c, and
G′(c) = f(c).
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Proof. Suppose

G(x) =

∫
x

a

f(t)dt

Then by definition

G′(x) = lim
h→0

G(x + h) − G(x)

h
= lim

h→0

∫
x+h

a
f(t)dt−

∫
x

a
f(t)dt

h

By the properties of integrals,∫
x+h

a

f(t)dt =

∫
x

a

f(t)dt +

∫
x+h

x

f(t)dt

so we can write

G(x + h) − G(x) =

∫
x+h

a

f(t)dt −

∫
x

a

f(t)dt =

∫
x+h

x

f(t)dt

and then
G(x + h) − G(x)

h
=

1

h

∫
x+h

x

f(t)dt

Because f is continuous on [x, x + h], by the Extreme Value Theorem,
there exist u, v ∈ [x, x + h] at which f attains its minimum m = f(u)
and maximum M = f(v) in [x, x + h].

By another property of integrals, if

m ≤ f(x) ≤ M

then

m(b − a) ≤

∫
b

a

f(t)dt ≤ M(b − a)

and in this case

m(x + h − x) ≤

∫
x+h

x

f(t)dt ≤ M(x + h − x)

or

mh ≤

∫
b

a

f(t)dt ≤ Mh

Consider the case where h > 0. Then we can divide all entries by h to
obtain

m ≤
1

h

∫
b

a

f(t)dt ≤ M
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or, equivalently,

f(u) ≤
1

h

∫
b

a

f(t)dt ≤ f(v)

As previously noted,

1

h

∫
b

a

f(t)dt =
G(x + h) − G(x)

h

so we can substitute for the middle term in the inequality to obtain

f(u) ≤
G(x + h) − G(x)

h
≤ f(v)

By construction,

x ≤ u ≤ x + h and x ≤ v ≤ v + h

So as h → 0, by the squeeze theorem we have

lim
h→0

u = x and lim
h→0

v = x

Since f is continuous by hypothesis, this implies

lim
h→0

f(u) = f(x) and lim
h→0

f(v) = f(x)

Taking limits as h → 0 in the inequality gives

lim
h→0

f(u) ≤ lim
h→0

G(x + h) − G(x)

h
≤ lim

h→0
f(v)

or
f(x) ≤ G′(x) ≤ f(x)

If we assumed f is continuous, this result holds for any x ∈ [a, b]. If we
assumed only that f is continuous at a point x = c, it holds for x = c

(or any other point where f is continuous).

A similar argument holds in the case where h < 0. This establishes
the result

G′(x) = f(x)
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