THE FUNDAMENTAL THEOREM OF CALCULUS

1. The Fundamental Theorem of Calculus

Theorem 1 (Fundamental Theorem of Calculus (part 1)). If $f:[a, b] \rightarrow$ \mathbb{R} is integrable and

$$
F:[a, b] \rightarrow \mathbb{R} \quad \text { satisfies } \quad F^{\prime}(x)=f(x) \text { on }[a, b]
$$

then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Proof. Let P be a partition of $[a, b]$. By hypothesis, $F^{\prime}(x)=f(x)$ on $[a, b]$, so F is differentiable on $[a, b]$ and therefore continuous on $[a, b]$.

Consequently, f is also continuous on each subinterval $\left[x_{k-1}, x_{k}\right]$ of P so by the Mean Value Theorem, there exists a point $t_{k} \in\left(x_{k-1}, x_{k}\right)$ such that

$$
\frac{F\left(x_{k}\right)-F\left(x_{k-1}\right)}{x_{k}-x_{k-1}}=F^{\prime}\left(t_{k}\right)=f\left(t_{k}\right)
$$

and so

$$
F\left(x_{k}\right)-F\left(x_{k-1}\right)=f\left(t_{k}\right)\left(x_{k}-x_{k-1}\right)
$$

Now in each subinterval, let

$$
m_{k}(f)=\inf \left\{f(x): x \in\left(x_{k-1}, x_{k}\right)\right\}
$$

and

$$
M_{k}(f)=\sup \left\{f(x): x \in\left(x_{k-1}, x_{k}\right)\right\}
$$

then

$$
m_{k}(f) \leq f\left(t_{k}\right) \leq M_{k}(f)
$$

and

$$
m_{k}(f)\left(x_{k}-x_{k-1}\right) \leq f\left(t_{k}\right)\left(x_{k}-x_{k-1}\right) \leq M_{k}(f)\left(x_{k}-x_{k-1}\right)
$$

so

$$
\sum_{k=1}^{n} m_{k}(f)\left(x_{k}-x_{k-1}\right) \leq \sum_{k=1}^{n} f\left(t_{k}\right)\left(x_{k}-x_{k-1}\right) \leq \sum_{k=1}^{n} M_{k}(f)\left(x_{k}-x_{k-1}\right)
$$

but
$\sum_{k=1}^{n} m_{k}(f)\left(x_{k}-x_{k-1}\right)=L(f, P) \quad$ and $\quad \sum_{k=1}^{n} M_{k}(f)\left(x_{k}-x_{k-1}\right)=U(f, P)$
therefore

$$
L(f, P) \leq \sum_{k=1}^{n} f\left(t_{k}\right)\left(x_{k}-x_{k-1}\right) \leq U(f, P)
$$

By substitution, the middle entry can be written as

$$
\begin{gathered}
\sum_{k=1}^{n} f\left(t_{k}\right)\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} F\left(x_{k}\right)-F\left(x_{k-1}\right) \\
=\left(F\left(x_{1}\right)-F(a)\right)+\left(F\left(x_{2}\right)-F\left(x_{1}\right)\right)+\cdots \\
\cdots+\left(F\left(x_{n-1}\right)-F\left(x_{n-2}\right)\right)+\left(F(b)-F\left(x_{n-1}\right)\right) \\
=F(b)-F(a)
\end{gathered}
$$

and we can write

$$
L(f, P) \leq F(b)-F(a) \leq U(f, P)
$$

independent of the choice of P. Taking limits as $\|P\| \rightarrow 0$, by Theorem 5.18

$$
\int_{a}^{b} f(x) d x \leq F(b)-F(a) \leq \int_{a}^{b} f(x) d x
$$

so by the squeeze theorem

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Theorem 2 (Fundamental Theorem of Calculus (part 2)). If $f:[a, b] \rightarrow$ \mathbb{R} is continuous and

$$
G(x)=\int_{a}^{x} f(t) d t
$$

then G is continuous on $[a, b]$. If f is continuous on $[a, b]$, then G is differentiable on $[a, b]$ and

$$
G^{\prime}(x)=f(x)
$$

If f is continuous at $x=c$, then G is differentiable at $x=c$, and $G^{\prime}(c)=f(c)$.

Proof. Suppose

$$
G(x)=\int_{a}^{x} f(t) d t
$$

Then by definition

$$
G^{\prime}(x)=\lim _{h \rightarrow 0} \frac{G(x+h)-G(x)}{h}=\lim _{h \rightarrow 0} \frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}
$$

By the properties of integrals,

$$
\int_{a}^{x+h} f(t) d t=\int_{a}^{x} f(t) d t+\int_{x}^{x+h} f(t) d t
$$

so we can write

$$
G(x+h)-G(x)=\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t=\int_{x}^{x+h} f(t) d t
$$

and then

$$
\frac{G(x+h)-G(x)}{h}=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

Because f is continuous on $[x, x+h]$, by the Extreme Value Theorem, there exist $u, v \in[x, x+h]$ at which f attains its minimum $m=f(u)$ and maximum $M=f(v)$ in $[x, x+h]$.

By another property of integrals, if

$$
m \leq f(x) \leq M
$$

then

$$
m(b-a) \leq \int_{a}^{b} f(t) d t \leq M(b-a)
$$

and in this case

$$
m(x+h-x) \leq \int_{x}^{x+h} f(t) d t \leq M(x+h-x)
$$

or

$$
m h \leq \int_{a}^{b} f(t) d t \leq M h
$$

Consider the case where $h>0$. Then we can divide all entries by h to obtain

$$
m \leq \frac{1}{h} \int_{a}^{b} f(t) d t \leq M
$$

or, equivalently,

$$
f(u) \leq \frac{1}{h} \int_{a}^{b} f(t) d t \leq f(v)
$$

As previously noted,

$$
\frac{1}{h} \int_{a}^{b} f(t) d t=\frac{G(x+h)-G(x)}{h}
$$

so we can substitute for the middle term in the inequality to obtain

$$
f(u) \leq \frac{G(x+h)-G(x)}{h} \leq f(v)
$$

By construction,

$$
x \leq u \leq x+h \quad \text { and } \quad x \leq v \leq v+h
$$

So as $h \rightarrow 0$, by the squeeze theorem we have

$$
\lim _{h \rightarrow 0} u=x \quad \text { and } \quad \lim _{h \rightarrow 0} v=x
$$

Since f is continuous by hypothesis, this implies

$$
\lim _{h \rightarrow 0} f(u)=f(x) \quad \text { and } \quad \lim _{h \rightarrow 0} f(v)=f(x)
$$

Taking limits as $h \rightarrow 0$ in the inequality gives

$$
\lim _{h \rightarrow 0} f(u) \leq \lim _{h \rightarrow 0} \frac{G(x+h)-G(x)}{h} \leq \lim _{h \rightarrow 0} f(v)
$$

or

$$
f(x) \leq G^{\prime}(x) \leq f(x)
$$

If we assumed f is continuous, this result holds for any $x \in[a, b]$. If we assumed only that f is continuous at a point $x=c$, it holds for $x=c$ (or any other point where f is continuous).

A similar argument holds in the case where $h<0$. This establishes the result

$$
G^{\prime}(x)=f(x)
$$

