
Assignment 8 Hints

Problem 2.2.1. In each of these, use the definition of convergence
directly, that is, lim(xn) = x if for every ǫ > 0, there exists an N ∈ N

such that
|xn − x| < ǫ whenever n ≥ N

Assume you are given some ǫ > 0, and try to solve the inequality

|xn − x| < ǫ

for n. Usually this will result in an expression of the form

n > h(ǫ)

for some function h(ǫ). Then, given any ǫ > 0, take N > h(ǫ) and the
inequality |xn − x| < ǫ will hold for all n > N .

Example: Show that
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So, take N to be any natural number greater than (1−2ǫ)/ǫ (we know
there is one by the Archimedean Principle).

Problem 2.2.4. Use the definition of convergence directly, that is,
lim(xn) = 0 if for every ǫ > 0, there exists an N ∈ N such that

|xn − 0| = |xn| < ǫ whenever n ≥ N

Problem 2.2.5. Show that there is an N ∈ N such that, if n > N ,
an = 0.

Problem 2.2.5b. This proof is correct.
1



2

Problem 2.2.7. The idea is to express the fact that xn → ∞ without
specifically referencing ∞ in any algebraic expression. In Definition
2.2.3, we take |xn−x| to be less than any preassigned ǫ. For a sequence
that is growing without bound, we want xn to exceed any preassigned
x, so the definition should say something like:

A sequence (xn) converges to infinity if for every x ∈ R, there exists
an N ∈ N such that

xn > x whenever n ≥ N

For specific functions, given a proposed upper bound x, try to solve
the expression

xn > x

for n, to get an inequality of the form

n > h(x)

Then, for any given x, take N > h(x).

Problem 2.2.8a. This solution is correct.

Problem 2.3.2a. We are given lim(xn) = 0. Given ǫ > 0, the defini-
tion of convergence guarantees the existence of an N ∈ N that makes
|xn| < ǫ2. What does this say about |√xn| when n > N?

Problem 2.3.2b. We can assume all quantities are positive. Use the
”multiplication by conjugates” technique from Calculus I to write

|√xn −
√

x| = |√xn −
√

x|
(√

xn +
√

x√
xn +

√
x

)

=
|xn − x|√
xn +

√
x
≤ |xn − x|√

x

As in part a), given lim xn = x and a value for ǫ > 0, the definition of
convergence guarantees the existence of an N ∈ N that makes |xn−x| <
ǫ · √x. (x is just a constant). What does this say about |xn − x|/√x
when n > N?

Problem 2.3.3. Suppose ǫ > 0 is given. We need to find an N ∈ N

such that |yn − l| < ǫ whenever n ≥ N . Because xn, zn → l, there exist
N1 and N2 such that, for n ≥ N1, |xn−l| < ǫ ⇒ xn ∈ (l−ǫ, l+ǫ), and for
n ≥ N2, |zn− l| < ǫ ⇒ zn ∈ (l− ǫ, l+ ǫ). Let N be the larger of N1 and
N2, and argue that xn ≤ yn ≤ zn means yn ∈ (l−ǫ, l+ ǫ) ⇒ |yn− l| < ǫ
whenever n ≥ N .
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Problem 2.3.4. You can prove this directly from the definition of
convergence using what is sometimes called an ”ǫ/2” proof. Let ǫ > 0
be given, then by the definition of a limit there exist N1, N2 ∈ N such
that

|an − l1| <
ǫ

2
wnenever n ≥ N1 and |an − l2| <

ǫ

2
wnenever n ≥ N2

Let N be the larger of N1 and N2. Then for n ≥ N ,

|l1−l2| = |l1−an+an−l2| ≤ |l1−an|+|l2−an| <
ǫ

2
+

ǫ

2
= ǫ whenever n ≥ N

Now apply Theorem 1.2.6 to conclude that l1 = l2.

Another possibility is to use the Algebraic Limit Theorem, part (ii),
which states (informally) that the limit of the termwise sum of two
convergent sequences is the sum of the limits, so let the sequences be an

and −an. By Theorem 2.3.3 (i), if (an) → a, lim−an = − lim an = −a,
and

lim(an + (−an)) = l1 + (−l2)

but since an − an = 0, this can also be written as

lim(an − an) = lim 0 = 0

so l1 + (−l2) = 0 and therefore l1 = l2.

Problem 2.3.5. This is an ”if and only if” statement, so we have to
prove the implication in both directions.

First, assume (zn) converges to some limit l. Use the definition of
convergence and the fact that yn = z2n to show that (yn) converges to
l. Observe that (xn = z2n − 1). At this point rather than repeat the
entire argument with the obvious minor changes, you can simply state
that a similar argument shows that (xn) converges to l.

Now assume (xn) and (yn) converge to l, and let ǫ > 0 be given. Argue
that there exist N1 and N2 such that |xn − l| < ǫ when n ≥ N1 and
|yn − l| < ǫ when n ≥ N2. What can you say about |zn − l| when
n > max{2N1, 2N2}?

Problem 2.3.7a. Use the definition of convergence and the fact the
|an| ≤ M for some M ∈ R. Suppose we are given ǫ > 0 and note that

|anbn − 0| = |anbn| = |an||bn| ≤ M |bn|
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We are given that lim bn = 0, so there exists an N ∈ N such that

|bn − 0| = |bn| <
ǫ

M
whenever n ≥ N

What does this say about M |bn|?
Problem 2.3.7b. Try to construct a counterexample. A good choice
for the convergent sequence (bn) might be (1, 1, 1, 1, 1, 1 . . .).

Problem 2.3.7c. Use the results of part a) and Theorem 2.3.2.

Problem 2.3.8a. Divergent doesn’t necessarily mean unbounded. Con-
sider a sequence that alternates between two values as a starting point.

Problem 2.3.8b. We are given that (xn) and (xn +yn) both converge,
so apply the Algebraic Limit Theorem to xn → x and xn + yn → l:

yn = (xn + yn) − xn ⇒ lim yn = lim(xn + yn) − lim xn

What does this say about lim yn?

Problem 2.3.8c. Consider a sequence (bn) with lim(bn) = 0.

Problem 2.3.8d. Suppose such sequences exist. Apply Theorem 2.3.2
to (an − bn).

Problem 2.3.8e. As a candidate for (an) consider a sequence that
converges to zero.

Problem 2.3.10. Use the definition of convergence.

Problem 2.3.11. This proof uses the definition of convergence. Sup-
pose ǫ > 0 is given. We have to find N ∈ N such that

n ≥ N ⇒ |yn − L| < ǫ for all n ≥ N

We know that lim xn = L, so there exists an M ∈ R such that

|xn − L| < M for every n ∈ N

We also know that there exists an N1 ∈ N such that

|xn − L| <
ǫ

2
for every n ≥ N1

Now for every n ≥ N1,

|yn − L| =

∣

∣

∣

∣

x1 + x2 + · · ·+ xN1
+ · · · + xn

n
− nL

n

∣

∣

∣

∣
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∣

∣

∣
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n

]
∣

∣

∣

∣

By the triangle inequality,

≤
∣

∣

∣

∣
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∣
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∣

∣

∣

∣
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∣

∣
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∣
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n
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ǫ(n − N1)

2n

Because N1 and M are fixed but n can be arbitrarily large, there exists
N2 such that

(N1 − 1)M

n
≤ ǫ

2
for all n ≥ N2

Now let N = max{N1, N2}. Then

(N1 − 1)M

n
≤ ǫ

2
and

ǫ(n − N1)

2n
≤ ǫ

2
for all n ≥ N

and finally

|yn − L| ≤ (N1 − 1)M

n
+

ǫ(n − N1)

2n
<

ǫ

2
+

ǫ

2
= ǫ for all n ≥ N

For the second part, consider the sequence (−1n).

Problem 2.3.12a. First fix n and let m → ∞, then take the limit of
the result as n → ∞, then fix m and let n → ∞, and take the limit of
the result as m → ∞.

Problem 2.3.12b. The definition is similar to Definition 2.2.3, but
the inequality is required to hold when both n and m are greater than
or equal to N .

Problem 2.4.1. By hypothesis the sequence of partial sums (tk) is
unbounded, and we can show that the sequence of partial sums (sm) is
unbounded if we can establish that for every k ∈ N, there is an m for
which

sm ≥ tk
2

Given an arbitrary k,

s2k = b1 + b2 + (b3 + b4) + (b5 + b6 + b7 + b8) + · · ·+ (b2k−1+1 + · · ·+ b2k)

≥ b1 + b2 + (b4 + b4) + (b8 + b8 + b8 + b8) + · · · + (b2k + · · ·+ b2k)
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= b1 + b2 + 2b4 + 4b8 + · · · + 2k−1b2k

=
1

2

(

2b1 + 2b2 + 4b4 + 8b8 + · · ·+ 2kb2k

)

=
b1

2
+

tk
2

so for some m,

sm ≥ b1

2
+

tk
2

The first term on the left is constant, and the second grows without
bound. What does this say about sm?

Problem 2.4.2. See the recursive sequence example posted on the
website.

Problem 2.4.3. See the recursive sequence example posted on the
website.

Problem 2.4.4. Write a recursion formula for the sequence,

xn+1 =
√

2xn, n = 1, 2, 3, . . . , x1 =
√

2

Now we can use induction to determine that (xn) is increasing. First
note that

x1 =
√

2 <

√

2
√

2 = x2

Now suppose xn < xn+1, then
√

xn <
√

xn+1 ⇒
√

2xn <
√

2xn+1 ⇒ xn+1 < xn+2

Now use induction to show that (xn) is bounded above by 2. x1 =√
2 < 2, and

xn < 2 ⇒ 2xn < 2 · 2 ⇒
√

2xn <
√

2 · 2 = 2

so (xn) is bounded above by 2. By the Monotone Convergence Theo-
rem, (xn) converges, and taking limits of the recursion formula,

lim xn+1 =
√

2xn ⇒ x =
√

2 · lim√
xn

Using Exercise 2.3.2b, if lim xn = x then lim
√

xn =
√

x, and finally

x =
√

2
√

x ⇒ x2 = 2x ⇒ x = 2
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Problem 2.4.5a. This problem is similar to the other recursive se-
quence problems, so we will end up using the Monotone Convergence
Theorem to show that the sequence converges, then take limits of both
sides of the recursion formula (once we know the limits exist) and solve
the resulting equation to find the actual limit. But, in this case the
given recursion formula does not lend itself to an easy induction proof
for all of the properties we need to establish, so we will have to resort to
other methods (there is no general method of showing that a nonlinear
recursive sequence converges).

One property we can establish by induction is that, with the given
value of x1, xn > 0 for all n ∈ N: x1 > 0 and, assuming xn > 0,

xn > 0 ⇒ xn +
2

xn

>
2

xn

⇒ xn+1 =
1

2

(

xn +
2

xn

)

>
1

xn

> 0

This tells us the generated sequence (xn) is bounded below by zero.
From the first few terms, the sequence appears to be decreasing. If we
can show that it is both decreasing and bounded below, the Monotone
Convergence Theorem guarantees that it converges.

Unfortunately, it is not obvious how to construct an induction proof
that the sequence is decreasing. Here is a direct approach (that is not
obvious). From the following graph of

f(x) =
1

2

(

x +
2

x

)

it appears that, for positive values of x,
√

2 might be a lower bound
for f(x):

1

2

(

xn +
2

xn

)

≥
√

2 if xn > 0
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Of course, the graph doesn’t prove this, so we have to construct a
rigorous argument to show that this is the case, but if we knew that
xn ≥

√
2 for all n, then we could establish that the sequence (xn) is

decreasing because

xn − xn+1 = xn − 1

2

(

xn +
2

xn

)

=
xn

2
− 1

xn

=
x2

n − 2

2xn

≥ 0

Returning to the proposition that xn ≥
√

2, recall from Calculus I that
a function has a minumum at x = a if f ′(a) = 0 and f ′′(a) > 0. Write
the recursion formula as

f(x) =
x

2
+

1

x
then f ′(x) =

1

2
− 1

x2
and f ′′(x) =

2

x3

Now observe that this function has a minimum (for positive values of
x) at x =

√
2, and the minimum function value is

1

2

(√
2 +

2√
2

)

=
√

2

which means that, for positive values of xn,

xn+1 ≥
√

2 ⇒ x2

n+1 ≥ 2

which is the condition we needed to establish to show that (xn) is
decreasing. Now that we have confirmed that this is the case, the
Monotone Convergence Theorem applies and we can be sure that (xn)
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converges. It remains only to take limits of both sides of the recursion
formula

lim xn+1 = lim

[

1

2

(

xn +
2

xn

)]

⇒ x =
1

2

(

x +
2

x

)

where lim(xn) = x. Solving this equation for x yields the final result,
lim xn =

√
2.

Problem 2.4.6a. Define An = {ak : k ≥ n}, then yn = sup An. Note
that An+1 ⊆ An, and apply the results of Exercise 1.3.4 to show that
yn is decreasing. From the fact that (an) is bounded and argue that
(yn) is also bounded. Apply the MCT.

Problem 2.4.6b. This time consider zn = inf{ak : k ≥ n}.

Problem 2.4.6c. Argue that for each n, in the terminology of parts
a) and b), yn ≥ zn, and apply Theorem 2.3.4.

Problem 2.4.6d. This is an if and only if statement, so the implica-
tion has to be established in both directions. Suppose lim yn = lim zn =
l, and let ǫ > 0 be given. There exists an N1 ∈ N such that yn ∈ Vǫ(l)
for every n > N1, and an N2 ∈ N such that zn ∈ Vǫ(l) for every n > N2.
Let N = max{N1, N − 2}. Then for every n ≥ N , yn, zn ∈ Vǫ(l) and
since zn ≤ an ≤ yn for all n, it must be that an ∈ Vǫ(l) ⇒ |an − l| < ǫ
when n ≥ N .

Next suppose that lim an = l. There exists N ∈ N such that an ∈ Vǫ(l)
for every n ≥ N , so

l − ǫ < an < l + ǫ for every n ≥ N

This means that l − ǫ is a lower bound for the set {aN , aN+1, . . .} and
l + ǫ is an upper bound for this set. Therefore,

l − ǫ ≤ yn ≤ l + ǫ for every n ≥ N

From part a) we know that lim yn exists, we can use the Order Limit
Theorem and assert that

l − ǫ ≤ lim yn = y ≤ l + ǫ

and, by Theorem 1.2.6, since ǫ can be made arbitrarily small, lim yn = l.
A similar argument holds for lim zn.
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Problem 2.5.1. Suppose (an) → L and (anj
) is a subsequence of (an),

and let ǫ > 0 be given. We need to find an N ∈ N such that

|anj
− L| < ǫ for all j ≥ N

By hypothesis, (an) → L, so there exists an N ∈ N such that

|an − L| < ǫ for all n ≥ N

Argue that nj ≥ j, that is, j ≥ N ⇒ nj ≥ N , so the same N works for
both the original sequence and the subsequence.

Problem 2.5.2a. Let (sn) be the sequence of partial sums,

sn = a1 + a2 + · · ·+ an

We are given that lim sn = L. Now write the regrouped series as:

b1 = a1 + a + 2 + · · ·+ an1

b2 = an1+1 + a + n1 + 2 + · · ·+ an2

...
bm = anm−1+1 + a + nm−1 + 2 + · · ·+ anm

...

We want to show that the series
∞

∑

m=1

bm converges to L

Argue that the sequence of partial sums for the regrouped series,

tm = b1 + b2 + · · · + bm

is just a subsequence of the sequence of partial sums for the original
series, and Theorem 2.5.2 applies.

Problem 2.5.2b. How does our original series differ from the original
series in the examples that were not associative?

Problem 2.5.3a. A sequence with the required properties can be con-
structed by taking any sequence that converges to zero, and any other
sequence that converges to one (neither of which is ever 0 or 1), and
interleaving the terms. One such example is:

xn =

{

1

n+1
if n is odd

1 − 1

n+1
if n is even
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Problem 2.5.3b. Interleave two sequences with the desired proper-
ties.

Problem 2.5.3c. Construct a sequence that is frequently in (Exercise
2.2.8) the sets {1}, {1/2}, {1/3}, {1/4}, etc.

Problem 2.5.3d. A sequence with the required properties can be con-
structed by taking any sequence that converges and interleaving it with
an unbounded sequence. One such example is:

xn =

{

1

n
if n is odd

n if n is even

Problem 2.5.3e. This result is correct. The bounded subsequence is
a sequence in its own right, and by the Bolzano-Weierstrass theorem
must have a convergent subsequence, which is in turn a subsequence of
the original sequence that converges.

Problem 2.5.4. Suppose for the sake of contradiction that (an) does
not converge to a, the limit of every convergent subsequence. Then,
negating the definition of a convergent sequence, it must be that there
exists an ǫ0 > 0 such that for every N ∈ N we can find an n ≥ N for
which |an − a| ≥ ǫ0. Essentially, this says we can construct a subse-
quence of (an) that never enters Vǫ0(a). But (an) is bounded by hy-
pothesis, so every subsequence of (an) is bounded, including the subse-
quence we constructed, so by the Bolzano-Weierstrass theorem it must
have a convergent subsequence, which is also a convergent subsequence
of (an), and by hypothesis must converge to a, but by construction
our first subsequence never enters Vǫ0(a), a contradiction if it has a
subsequence that converges to a.

Problem 2.5.5. In Example 2.5.3, it was established that for 0 < b <
1,

(bn) → 0

We wish to extend this result to −1 < b < 1. The case b = 0 is trivial
since

(bn) = 0, 0, 0, . . .

so we consider −1 < b < 0. Unfortunately bn is not monotonic, so we
cannot use the MCT. By the definition of convergence, lim(bn) = 0 if
for every ǫ > 0, there is an N ∈ N such that

|bn − 0| < ǫ ⇒ |bn| < ǫ whenever n ≥ N
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For −1 < b < 0, we can write b as −1·a for some a suche that 0 < a < 1.
Then

|bn| = |(−1 · a)n| = | − 1n||an| = |an|

but, by Example 2.5.3, |an| = an → 0, so |bn| → 0 as well, and therefore
lim bn = 0, and we have established that, for −1 < b < 1, lim bn = 0.

Problem 2.5.6. Because (an) is bounded, the set

S = {x ∈ R : x < an for infinitely many terms an}

is nonempty, and bounded above, so s = sup S exists.

For any fixed k ∈ N, there is an s′ ∈ S satisfying

s − 1

k
< s′

and, from the way S is defined, s − 1/k ∈ S and there are an infinite
number of an satisfying

s − 1

k
< an

By definition, s = sup S is an upper bound for S, so we can be sure
that

s +
1

k
/∈ S,

(otherwise s would not be an upper bound), which means that there
are at most a finite number of elements of (an) larger than s + 1

k
. So

the fact that an infinite number of terms of (an) are greater than s− 1

k
,

and only a finite number are greater than s + 1

k
, means that there are

an infinite number of terms of (an) satisfying

s − 1

k
≤ an ≤ s +

1

k

Now we construct a subsequence of (an) by choosing an element for
each k ∈ N as follows. Starting with k = 1, choose an1

so that

s − 1 ≤ an1
≤ s + 1

Now continue choosing elements ank
so that each time

nk+1 > nk and s − 1

k + 1
≤ ank+1

≤ s +
1

k + 1
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The fact that the inequality is satisfied by an infinite number of terms
for any k means we can continue this process indefinitely, and produce
a subsequence (ank

) of (an).

Now claim that lim(ank
) = s. To prove this, let ǫ > 0 be given and

choose

K >
1

ǫ

which we can always do by the Archimedean Property. Then if k ≥ K,

1

k
< ǫ ⇒ s − ǫ < ank

< s + ǫ ⇒ |ank
− s| < ǫ

for every k ≥ K.


