ASSIGNMENT 8

Problem 1. (3.4.4a) Suppose $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous and there is an $L \in \mathbb{R}$ such that

$$
f(x) \rightarrow L \quad \text { as } \quad x \rightarrow \infty
$$

Prove that f is uniformly continuous on $[0, \infty)$.
Problem 2. (3.4.6a) Let I be a bounded interval (open, closed, or half-open). Prove that if $f: I \rightarrow \mathbb{R}$ is uniformly continuous on I, then f is bounded on I.

Problem 3. (3.4.6b) Show by counterexample that the preceding statement is false if either I is unbounded or f is continuous, but not uniformly continuous on I.

Problem 4. (3.3.4) A point $x \in \mathbb{R}$ is called a fixed point of $f: \mathbb{R} \rightarrow \mathbb{R}$ if

$$
f(x)=x
$$

Suppose $f:[a, b] \rightarrow[a, b]$ is continuous. Prove that f has a fixed point, that is, there exists $c \in[a, b]$ such that $f(c)=c$.

