## 1. ASSIGNMENT 7

1.1. Problem 1. (2.4.1) Prove that if $\left\{x_{n}\right\}$ is a sequence that satisfies

$$
\left|x_{n}\right| \leq \frac{2 n^{2}+3}{n^{3}+5 n^{2}+3 n+1}
$$

for all $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is Cauchy.
1.2. Problem 2. (2.4.3b) Suppose $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences in $\mathbb{R}$. Without using Theorem 2.29, prove that $\left\{x_{n}+y_{n}\right\}$ is Cauchy.
1.3. Problem 3. (3.1.1 d) Use Definition 3.1 to prove that

$$
\lim _{x \rightarrow 0} x^{3} \sin \left(e^{x^{2}}\right)=0
$$

1.4. Problem 4. (3.2.4 a) Prove the following comparison theorem for real functions $f$ and $g$, and $a \in \mathbb{R}$
If $f(x) \geq g(x)$ and $g(x) \rightarrow \infty$ as $x \rightarrow a \quad$ then $\quad f(x) \rightarrow \infty$ as $x \rightarrow a$
1.5. Problem 5. (3.2.4 b) Prove the following comparison theorem for real functions $f, g$, and $h$ :

If $f(x) \leq g(x) \leq h(x)$ and $\lim _{x \rightarrow \infty} f(x)=L=\lim _{x \rightarrow \infty} h(x)$
then $g(x) \rightarrow L$ as $n \rightarrow \infty$.

