1. ASSIGNMENT 6

1.1. Problem 1. (2.2.0 b) Decide whether the following statement is true or false. If it is true, provide a proof. If it is false, provide a counterexample.

$$
\text { If } \quad x_{n} \rightarrow-\infty \quad \text { then } \frac{1}{x_{n}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

1.2. Problem 2. (2.3.4) Suppose $x_{0} \in \mathbb{R}$ and

$$
x_{n}=\frac{1+x_{n-1}}{2} \quad \text { for } n \in \mathbb{N}
$$

Use the Monotone Convergence Theorem to prove that $x_{n} \rightarrow 1$ as $n \rightarrow \infty$. (hint: consider two cases, $x_{0}<1$ and $x_{0} \geq 1$)
1.3. Problem 3. (2.3.7) Suppose $E \subset \mathbb{R}$ is a nonempty bounded set and that $\sup E \notin E$. Prove that there exists a strictly increasing sequence $\left\{x_{n}\right\}$ that converges to $\sup E$ such that $x_{n} \in E$ for all $n \in \mathbb{N}$.

