1. Assignment 5

1.1. **Problem 1.** (2.1.5 a) Let C be a fixed positive constant and $\{b_n\}$ a sequence of nonnegative numbers that converges to zero. If $\{x_n\}$ is a sequence of real numbers satisfying

$$|x_n - a| < Cb_n$$
 for sufficiently large n

prove that $x_n \to a$ as $n \to \infty$.

- 1.2. **Problem 2.** (2.1.7 a,b,c)
- a) Suppose that x_n and y_n converge to the same real number. Prove that $x_n-y_n\to 0$ as $n\to \infty$
- b) Prove that the sequence $\{x_n\}$ with $x_n = n$ does not converge.
- c) Show by counterexample that the converse of part a) is false, that is, it is possible to have sequences $\{x_n\}$ and $\{y_n\}$ with $x_n \neq y_n$ for all n, such that neither is convergent but $x_n y_n \to 0$ as $n \to \infty$. (Hint: consider unbounded sequences)
- 1.3. **Problem 3.** (2.2.5) Suppose $x \in \mathbb{R}$, $x_n \geq 0$, and $x_n \to x$ as $n \to \infty$. Prove that

$$\sqrt{x_n} \to \sqrt{x}$$
 as $n \to \infty$

For the case x = 0, use inequality (8) of Section 1.2.

1.4. **Problem 4.** (2.2.6) Prove that for any given $x \in \mathbb{R}$ there is a sequence $\{r_n\}$ in \mathbb{Q} that converges to x.