1. ASSIGNMENT 5

1.1. Problem 1. (2.1.5 a) Let C be a fixed positive constant and $\left\{b_{n}\right\}$ a sequence of nonnegative numbers that converges to zero. If $\left\{x_{n}\right\}$ is a sequence of real numbers satisfying

$$
\left|x_{n}-a\right|<C b_{n} \quad \text { for sufficiently large } n
$$

prove that $x_{n} \rightarrow a$ as $n \rightarrow \infty$.
1.2. Problem 2. (2.1.7 a,b,c)
a) Suppose that x_{n} and y_{n} converge to the same real number. Prove that $x_{n}-y_{n} \rightarrow 0$ as $n \rightarrow \infty$
b) Prove that the sequence $\left\{x_{n}\right\}$ with $x_{n}=n$ does not converge.
c) Show by counterexample that the converse of part a) is false, that is, it is possible to have sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ with $x_{n} \neq y_{n}$ for all n, such that neither is convergent but $x_{n}-y_{n} \rightarrow 0$ as $n \rightarrow \infty$. (Hint: consider unbounded sequences)
1.3. Problem 3. (2.2.5) Suppose $x \in \mathbb{R}, x_{n} \geq 0$, and $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Prove that

$$
\sqrt{x_{n}} \rightarrow \sqrt{x} \quad \text { as } \quad n \rightarrow \infty
$$

For the case $x=0$, use inequality (8) of Section 1.2.
1.4. Problem 4. (2.2.6) Prove that for any given $x \in \mathbb{R}$ there is a sequence $\left\{r_{n}\right\}$ in \mathbb{Q} that converges to x.

