Problem 1. (4.1.6)
Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by:

$$
f(x)=\left\{\begin{array}{lll}
x^{3} & \text { if } & x \geq 0 \\
0 & \text { if } & x<0
\end{array}\right.
$$

Find all $n \in \mathbb{N}$ such that $f^{(n)}$ exists for all $x \in \mathbb{R}$.
Problem 2. (4.3.3) $r \in \mathbb{R}$ is called a root of a function f if $f(r)=0$. Show that if f is differentiable on \mathbb{R}, then f^{\prime} has at least one root between any two roots of f.

Problem 3. (4.3.5) Suppose f is differentiable on \mathbb{R}. If $f^{\prime}(0)=1$ and $\left|f^{\prime}(x)\right| \leq 1$ for all $x \in \mathbb{R}$, show that

$$
|f(x)| \leq|x|+1 \quad \text { for all } \quad x \in \mathbb{R}
$$

Problem 4. (4.4.2a) Find the Taylor polynomial for $f(x)=\ln x$ centered at $x_{0}=1$

Problem 5. (4.4.1b) Prove that if $x \in[-1,1]$, then the absolute difference between $\cos x$ and the sum of the first $2 n$ terms of the Taylor polynomial for $\cos x$ centered at $x_{0}=0$ is less than or equal to $1 /(2 n+1)!$:

$$
\left|\cos x-P_{2 n}(x)\right| \leq \frac{1}{(2 n+1)!}
$$

