
On the final you will be asked to give one or more of the following
proofs:

Theorem 1 (Exercise 3.2.13). The only subsets of R that are both open
and closed are R and ∅.

(See class notes for proof)

Theorem 2 (Theorem 3.2.13). A set O ⊆ R is open if and only if its
compliment Oc is closed.

(See class notes for proof)

Theorem 3 (Heine-Borel). A set K ⊆ R is compact if and only if it is
closed and bounded.

(See class notes for proof)

Theorem 4 (Theorem 3.2.3). The union of an arbitrary collection of
open sets is open. The intersection of a finite collection of open sets is
open.

(See class notes for proof)

Theorem 5 (Theorem 3.4.6 ⇐). If every pair of nonempty disjoint sets
A, B with A∪B = E has a convergent sequence in A with its limit in B
or a convergent sequence in B with its limit in A, then E is connected.

Proof. Unlike open and closed, connected and disconnected are mutu-
ally exclusive. We will argue the contrapositive which, following the
rules of negation, can be stated as:

If E is disconnected, then there exists a pair of nonempty, disjoint sets
A, B with A ∪ B = E such that no convergent sequence in A has its
limit in B, and no convergent sequence in B has its limit in A.

By hypothesis, E is disconnected, so by definition there exist nonempty
sets A and B with

E = A ∪ B and A ∩ B = A ∩ B = ∅

Let (an) → a be a convergent sequence in A, that is, an ∈ A for every
n ∈ N. If an = a for any term of the sequence (an), then by hypothesis a
has to be in A. If an 6= a for every n ∈ N, then because (an) → a, every
ǫ-neighborhood of a has to contain an element of (an), so it contains



an element of A not equal to a, and therefore a is a limit point of A.
By definition, if L is the set of limit points of A, the closure of A is

A = A ∪ L

so a ∈ A. But,
A ∩ B = ∅

(by hypothesis), so a /∈ B. A similar argument shows that if (bn) → b
is a convergent sequence in B, then b /∈ A, and the result is established.
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Theorem 6 (Exercise 3.2.12e). Every finite set is closed.

Proof. We will show that a finite set F has no limit points, so it satisfies
the definition of a closed set vacuously.

Suppose F ⊆ R is finite, that is, either F = ∅ or

F = {x1, x2, . . . , xn}

for some n ∈ N. If F = ∅ then F is closed because its compliment,
R is open. If F is a singleton, F = {x} for some x ∈ R, then no
ǫ-neighborhood of x (or any other real number) contains elements of F
other than x, so F has no limit points.

Finally, suppose F has at least two elements, and let

D = {dij = |xi − xj | : 1 ≤ i ≤ n, i 6= j}

That is, {dij} is the set of all distances on the real line between pairs
of elements of F . Since F is finite, D is finite as well, so there exists a
nonnegative real number dmin such that

dmin = min(dij)

Now let x be an arbitrary element of F , and choose 0 < ǫ < dmin. Then
the ǫ-neighborhood

Vǫ(x) = {y ∈ R : x − ǫ < y < x + ǫ}

does not contain any points of F other than x itself, so x is not a limit
point of F . Since x was an arbitrarily chosen, no x ∈ F is a limit point
of F .
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