Choose any 8 of the following:

1) Suppose a sequence $\left(x_{n}\right)$ is defined by the recursion formula

$$
x_{n+1}=\frac{1}{5-2 x_{n}}, \quad n=1,2,3, \ldots
$$

with $x_{1}=1$. Prove that $\left(x_{n}\right)$ converges and

$$
\lim x_{n}=\frac{5-\sqrt{17}}{4}
$$

2) Use the Monotone Convergence Theorem to give a proof of the Nested Interval Property.
3) Use the Bolzano-Weierstrass Theorem to give a proof of the Nested Interval Property.
4) Use the Cauchy Criterion to prove the Bolzano-Weierstrass Theorem.
5) Suppose $A \subseteq \mathbb{R}$ is bounded above. Show that $\sup A \in \bar{A}$
6) If $x=\lim a_{n}$ for some sequence $\left(a_{n}\right)$ contained in A satisfiying $a_{n} \neq x$, then x is a limit point of A.
7) If O is an open set and $\left(x_{n}\right)$ is a sequence converging to $x \in O$, prove that all but a finite number of the terms of $\left(x_{n}\right)$ must be contained in O.
8) Show that if $K \subseteq \mathbb{R}$ is compact, then $\sup K$ and $\inf K$ both exist and are elements of K.
9) Show that if K is compact and F is closed, then $F \cap F$ is compact.
10) Show that if $K \subseteq \mathbb{R}$ is closed and bounded, then K is compact.
11) A set E is totally disconnected if, given any two points $x, y \in E$, there exist separated sets A and B with

$$
x \in A, \quad y \in B, \quad \text { and } \quad E=A \cup B
$$

12) Prove that if $A \subseteq \mathbb{R}$ is connected, then \bar{A} is connected.
