Section 2.4 Supplementary problems.

Problem 1 Suppose

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

has the property that, for any $\vec{X} \in \mathbb{R}^{2}$,

$$
T(\vec{x})=A \vec{x}
$$

for some 2×2 matrix A.
Prove that

$$
T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y}) \quad \text { and } \quad T(k \vec{x})=k T(\vec{x})
$$

where \vec{x} and \vec{y} are arbitrary elements of \mathbb{R}^{2} and $k \in \mathbb{R}$ is an arbitrary scalar.

Problem 2 Now assume that, for arbitrary vectors $\vec{x}, \vec{y} \in \mathbb{R}^{2}$ and arbitrary scalar $k \in \mathbb{R}$,

$$
T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y}) \quad \text { and } \quad T(k \vec{x})=k T(\vec{x})
$$

Prove that there is a 2×2 matrix A with the property that

$$
T(\vec{x})=A \vec{x}
$$

for any $x \in \mathbb{R}^{2}$

