
Vector Algebra
Gene Quinn

Vector Algebra – p.1/33



Graphical Representation

The standard representation of a vector ~v ∈ R
2 is a line

from the origin to the point with coordinates equal to the
components of ~v, namely (v1, v2), with an arrowhead on the
end at (v1, v2):
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Vector Algebra
The first operation we will define is the product of a scalar
k ∈ R times a vector ~v ∈ Rn.

There are a number of ways this product could be defined,
but the usual choice is:

k~v = k
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Vector Algebra
The first operation we will define is the product of a scalar
k ∈ R times a vector ~v ∈ Rn.

There are a number of ways this product could be defined,
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So k~v is simply the original vector ~v with each component
multiplied (using ordinary real number multiplication) by k.
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Vector Algebra
Definition : Vectors which are scalar multiples of each other
are said to be parallel .
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Vector Algebra
Definition : Vectors which are scalar multiples of each other
are said to be parallel .

So, the following vectors are parallel:

~u =

[

1

2

]

~v =

[

0.5

1

]

~w =

[

−1

−2

]

~x =

[

9

18

]
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Vector Algebra
Definition : Vectors which are scalar multiples of each other
are said to be parallel .

So, the following vectors are parallel:

~u =

[

1

2

]

~v =

[

0.5

1

]

~w =

[

−1

−2

]

~x =

[

9

18

]

The set of all vectors parallel to a given vector ~v can be
depicted as a line through the origin having the same
direction as ~v.
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Multiplication by a Scalar
We start with the vector ~v = (0.8, 0.4), which is represented
graphically as:

Vector Algebra – p.5/33



Multiplication by a Scalar
The vector 2~v = (2 · 0.8 , 2 · 0.4) = (1.6, 0.8) is represented
graphically as:
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Multiplication by a Scalar
The vector 2~v = (2 · 0.8 , 2 · 0.4) = (1.6, 0.8) is represented
graphically as:

Note that 2~v is parallel to ~v.
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Multiplication by a Scalar
The vector 2.5~v = (2.5 · 0.8, 2.5 · 0.4) = (2, 1) is represented
graphically as:
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Multiplication by a Scalar
The vector 2.5~v = (2.5 · 0.8, 2.5 · 0.4) = (2, 1) is represented
graphically as:

Note that 2.5~v is parallel to ~v.
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Multiplication by a Scalar
The vector 3~v = (3 · 0.8, 3 · 0.4) = (2.4, 1.2) is represented
graphically as:
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Multiplication by a Scalar
The vector 3~v = (3 · 0.8, 3 · 0.4) = (2.4, 1.2) is represented
graphically as:

As before, 3~v is parallel to ~v.
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Multiplication by a Scalar
The vector −~v = (−1 · 0.8,−1 · 0.4) = (−0.8,−0.4) is
represented graphically as:
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Multiplication by a Scalar
The vector −2.5~v = (−2.5 · 0.8,−2.5 · 0.4) = (−2,−1) is
represented graphically as:
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Multiplication by a Scalar
The endpoints of the set of all vectors
W = {~w : w = k~v, k ∈ R} is represented graphically as
the line L:
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Vector Addition
The other operation we will define is the sum of two vectors
~v, ~w ∈ R

n (~u and ~w must have the same number of
components).

~v + ~w =
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Vector Addition
The other operation we will define is the sum of two vectors
~v, ~w ∈ R

n (~u and ~w must have the same number of
components).
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So ~v + ~w is simply the vector that has its ith component
equal to the sum of the ith components of ~u and ~w.
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Vector Addition

~v =

[

1

1

]

~w =

[

−2

1

]
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Vector Addition

~v =

[

1

1

]

~w =

[

−2

1

]

~v+~w =
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]

=
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Vector Addition
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Vector Addition

~v =

[

1

2

]

~w =

[

−2

0

]
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Vector Addition

~v =

[

1

2

]

~w =

[

−2

0

]

~v+~w =

[

1 + (−2)

2 + 0

]

=

[

−1

2

]
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Vector Addition

~v =

[

1

2

]

~w =

[

−2

0

]

~v+~w =

[

1 + (−2)

2 + 0

]

=

[

−1

2

]
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Vector Addition

~v =

[

−1

1

]

~w =

[

2

−1

]
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Vector Addition

~v =

[

−1

1

]

~w =

[

2

−1

]

~v+~w =

[

−1 + 2

1 + (−1)

]

=

[

1

0

]
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Vector Addition

~v =

[

−1

1

]

~w =

[

2

−1

]

~v+~w =

[

−1 + 2

1 + (−1)

]

=

[

1

0

]
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Vector Addition

~v =

[

2

−0.4

]

~w =

[

−0.2

−0.6

]
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Vector Addition

~v =

[

2

−0.4

]

~w =

[

−0.2

−0.6

]

~v + ~w =

[

1.8

−1

]
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Vector Addition

~v =

[

2

−0.4

]

~w =

[

−0.2

−0.6

]

~v + ~w =

[

1.8

−1

]
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Vector Subtraction
Subtraction is equivalent to negation followed by addition.

~v =
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Vector Subtraction

~v =

[

2

0

]

~w =

[

−1

−1

]

− ~w =

[

1

1

]
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Vector Subtraction

~v =

[

2

0

]

~w =

[

−1

−1

]

~v + (−~w) =

[

3

1

]
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Vector Subtraction

~v =

[

2

0

]

~w =

[

−1

−1

]

~v − ~w =

[

3

1

]
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Vector Subtraction
Notice that, if we draw ~v − ~w displaced so that it originates
at the tip of ~w, the arrowhead end terminates at the tip of ~v.
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Vector Subtraction
This is true in general; If we draw the parallelogram having
(nonparallel) vectors ~w and ~w as sides, then ~v + ~w always
connects the origin an the opposite vertex, while ~v − ~w,
displaced to the end of ~w, connects the two arrow ends.
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Vector Subtraction
Looking at the diagram below, can you visualize the
following equation?

~v = ~w + (~v − ~w)
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Algebraic versus Geometric View
Although our definitions of vector addition and multiplication
of a vector by a scalar are purely algebraic, we can
visualize the results of these operations in geometric terms.

This is a common situation in Mathematics. Often there is
more than one way to look at a problem.

Rather than just cluttering things up, this situation usually
makes it easier to understand the Mathematics.

Some concepts are crystal clear in the geometric view, but
not obvious at all in the algebraic view. For other concepts,
the opposite may be true.
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Algebraic Properties
The following are algebraic properties of the vector sum
~v + ~w:

For arbitrary vectors ~u,~v, ~w ∈ R
n,

(~u + ~v) + ~w = ~u + (~v + ~v) (associative)
~u + ~w = ~w + ~u (commutative)
~v +~0 = ~v (zero element)
∀~v ∈ R

n∃!~x ∈ R
n such that ~v + ~x = ~0 (additive inverse)
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Algebraic Properties
The following are algebraic properties of the vector sum
~v + ~w:

For arbitrary vectors ~u,~v, ~w ∈ R
n,

(~u + ~v) + ~w = ~u + (~v + ~v) (associative)
~u + ~w = ~w + ~u (commutative)
~v +~0 = ~v (zero element)
∀~v ∈ R

n∃!~x ∈ R
n such that ~v + ~x = ~0 (additive inverse)

The last property is read: For every vector ~v in R
n there

exists a unique vector ~x in R
n such that ~v + ~x is the zero

vector ~0. (∀ is read "for all" or "for every", ∃ is read "there
exists a", and ! is read "unique")
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Algebraic Properties
The following are algebraic properties of the product of a
scalar and vector:

For arbitrary vectors ~v, ~w ∈ R
n and arbitrary scalars c, k ∈ R,

k(~v + ~w) = k~v + k ~w (distributive)
(c + k)~v = c~v + k~v (distributive)
c(k~v) = (ck)~v (associative)
1~v = ~v multiplicative identity element
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Algebraic Properties
The following are algebraic properties of the product of a
scalar and vector:

For arbitrary vectors ~v, ~w ∈ R
n and arbitrary scalars c, k ∈ R,

k(~v + ~w) = k~v + k ~w (distributive)
(c + k)~v = c~v + k~v (distributive)
c(k~v) = (ck)~v (associative)
1~v = ~v multiplicative identity element

You should become familiar with these properties and the
ones from the previous foil.

Vector Algebra – p.34/33


	Graphical Representation
	Vector Algebra
	Vector Algebra
	Multiplication by a Scalar
	Multiplication by a Scalar
	Multiplication by a Scalar
	Multiplication by a Scalar
	Multiplication by a Scalar
	Multiplication by a Scalar
	Multiplication by a Scalar
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Addition
	Vector Subtraction
	Vector Subtraction
	Vector Subtraction
	Vector Subtraction
	Vector Subtraction
	Vector Subtraction
	Vector Subtraction
	Algebraic versus Geometric View
	Algebraic Properties
	Algebraic Properties

