THE DETERMINANT OF AN UPPER TRIANGULAR MATRIX

Definition:

An $n \times n$ matrix A with $(ij)^{th}$ entry a_{ij} is called:

upper triangular	if	$a_{ij} = 0$	whenever	i > j
lower triangular	if	$a_{ij} = 0$	whenever	i < j
diagonal	if	$a_{ij} = 0$	whenever	$i \neq j$

Theorem: The determinant of an $n \times n$ upper triangular matrix A is the product of its diagonal entries:

$$\det(A) = \prod_{i=1}^{n} a_{ii}$$

Proof. (The proof is by induction on n, the number of rows in A).

Claim 1: The determinant of a 1×1 upper triangular matrix A is

$$\prod_{i=1}^{1} a_{ii} = a_{11}$$

Proof of Claim 1: Every 1×1 matrix is upper triangular, and by definition the determinant of a 1×1 matrix A is a_{11} . (q.e.d. claim 1)

Claim 2: Assume that the determinant of an $n \times n$ upper triangular matrix A is:

$$\prod_{i=1}^{n} a_{ii}$$

(This statement is called the *induction hypothesis*)

Then the determinant of an $(n + 1) \times (n + 1)$ upper triangular matrix is

Proof of Claim 2: Suppose A is an $(n+1) \times (n+1)$ upper triangular matrix.

The determinant of A written as the Laplace expansion down the first column is:

$$\det(A) = \sum_{i=1}^{n+1} (-1)^{i+1} a_{i1} \det(A_{i1})$$

where A_{i1} is the matrix obtained by removing the i^{th} row and first column of A.

By hypothesis, A is upper triangular, so $a_{ij} = 0$ whenever i > j.

Therefore, the only nonzero element in the first column is a_{11} and the Laplace expansion reduces to:

$$\det(A) = a_{11} \det(A_{11})$$

The fact that A is $(n + 1) \times (n + 1)$ upper triangular means that A_{11} is $n \times n$ upper triangular.

By the induction hypothesis $det(A_{11})$ is the product of its diagonal entries:

$$\det(A_{11}) = a_{22} \cdot a_{33} \cdots a_{(n+1)(n+1)} = \prod_{i=2}^{n+1} a_{ii}$$

By substitution,

$$\det(A) = a_{11} \det(A_{11}) = a_{11} \prod_{i=2}^{n+1} a_{ii} = \prod_{i=1}^{n+1} a_{ii}$$

 $(q.e.d.\ claim 2)$

Since P(1), the proposition when n = 1, is true, and

$$P(n) \Rightarrow P(n+1)$$
,

the proposition is true for any positive integer n by the axiom of induction. This completes the proof of the theorem.

 $\mathbf{2}$