THE DETERMINANT OF AN UPPER TRIANGULAR MATRIX

Definition:

An $n \times n$ matrix A with $(i j)^{t h}$ entry $a_{i j}$ is called:
upper triangular if $a_{i j}=0$ whenever $i>j$
lower triangular if $a_{i j}=0$ whenever $i<j$
diagonal if $a_{i j}=0$ whenever $i \neq j$

Theorem: The determinant of an $n \times n$ upper triangular matrix A is the product of its diagonal entries:

$$
\operatorname{det}(A)=\prod_{i=1}^{n} a_{i i}
$$

Proof. (The proof is by induction on n, the number of rows in A).

Claim 1: The determinant of a 1×1 upper triangular matrix A is

$$
\prod_{i=1}^{1} a_{i i}=a_{11}
$$

Proof of Claim 1: Every 1×1 matrix is upper triangular, and by definition the determinant of a 1×1 matrix A is a_{11}. (q.e.d. claim 1)

Claim 2: Assume that the determinant of an $n \times n$ upper triangular matrix A is:

$$
\prod_{i=1}^{n} a_{i i}
$$

(This statement is called the induction hypothesis)

Then the determinant of an $(n+1) \times(n+1)$ upper triangular matrix is

$$
\prod_{i=1}^{n+1} a_{i i}
$$

Proof of Claim 2: Suppose A is an $(n+1) \times(n+1)$ upper triangular matrix.

The determinant of A written as the Laplace expansion down the first column is:

$$
\operatorname{det}(A)=\sum_{i=1}^{n+1}(-1)^{i+1} a_{i 1} \operatorname{det}\left(A_{i 1}\right)
$$

where $A_{i 1}$ is the matrix obtained by removing the $i^{\text {th }}$ row and first column of A.

By hypothesis, A is upper triangular, so $a_{i j}=0$ whenever $i>j$.
Therefore, the only nonzero element in the first column is a_{11} and the Laplace expansion reduces to:

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{11}\right)
$$

The fact that A is $(n+1) \times(n+1)$ upper triangular means that A_{11} is $n \times n$ upper triangular.

By the induction hypothesis $\operatorname{det}\left(A_{11}\right)$ is the product of its diagonal entries:

$$
\operatorname{det}\left(A_{11}\right)=a_{22} \cdot a_{33} \cdots a_{(n+1)(n+1)}=\prod_{i=2}^{n+1} a_{i i}
$$

By substitution,

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{11}\right)=a_{11} \prod_{i=2}^{n+1} a_{i i}=\prod_{i=1}^{n+1} a_{i i}
$$

(q.e.d. claim 2)

Since $P(1)$, the proposition when $n=1$, is true, and

$$
P(n) \Rightarrow P(n+1),
$$

the proposition is true for any positive integer n by the axiom of induction. This completes the proof of the theorem.

