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Subspace
Consider a set of vectors V ⊆ R

n

we say that V is a (linear) subspace of R
n if V has the

following three properties:

~0n ∈ V

V is closed under addition

V is closed under scalar multiplication
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Subspace
Consider a set of vectors V ⊆ R

n

we say that V is a (linear) subspace of R
n if V has the

following three properties:

~0n ∈ V

V is closed under addition

V is closed under scalar multiplication

If T : R
m → R

n is a linear transformation, we have seen that
the kernel of T , ker(T ), is a subspace.
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Subspace
It is also true that the span of any nonempty set of vectors
in R

n is a subspace.
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Subspace
It is also true that the span of any nonempty set of vectors
in R

n is a subspace.

To prove this we need to show that the span contains ~0n,
and is closed under addition and scalar multiplication.
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Subspace
It is also true that the span of any nonempty set of vectors
in R

n is a subspace.

To prove this we need to show that the span contains ~0n,
and is closed under addition and scalar multiplication.

The proof of these statements is as follows.

By definition, if V = {~v1, . . . ~vm} is a nonempty subset of R
n,

span(V ) = {c1~v1 + · · · + cn~vm : c1, . . . , cn ∈ R}
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Subspace

Claim 1: ~0 ∈ span(V )

Proof of Claim 1: Choose

c1 = c2 = · · · = cn = 0

Then
c1~v1 + c2~v2 + · · · + cn~vm = ~0n

so ~0n is in span(V ).

Subspace – p.4/8



Subspace
Claim 2: span(V ) is closed under addition.

Proof of Claim 2: Let ~x, ~y be arbitrary vectors in span(V ).
Then for some scalars c1, . . . , cn, d1, . . . , dn,

~x = c1~v1 + · · · + cn~vn and ~y = d1~v1 + · · · + dn~vn
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Subspace
Claim 2: span(V ) is closed under addition.

Proof of Claim 2: Let ~x, ~y be arbitrary vectors in span(V ).
Then for some scalars c1, . . . , cn, d1, . . . , dn,

~x = c1~v1 + · · · + cn~vn and ~y = d1~v1 + · · · + dn~vn

Then by the rules of vector addition and scalar
multiplication,

~x + ~y = (c1~v1 + · · · + cn~vn) + (d1~v1 + · · · + dn~vn)
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Subspace
Claim 2: span(V ) is closed under addition.

Proof of Claim 2: Let ~x, ~y be arbitrary vectors in span(V ).
Then for some scalars c1, . . . , cn, d1, . . . , dn,

~x = c1~v1 + · · · + cn~vn and ~y = d1~v1 + · · · + dn~vn

Then by the rules of vector addition and scalar
multiplication,

~x + ~y = (c1~v1 + · · · + cn~vn) + (d1~v1 + · · · + dn~vn)

~x + ~y = [(c1 + d1)~v1 + · · · + (cn + dn)~vn]

so (~x + ~y) ∈ span(V ).
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Subspace
Claim 3: span(V ) is closed under scalar multiplication.

Proof of Claim 2: Let ~x be an arbitrary vector in span(V ).
Then for some scalars c1, . . . , cn,

~x = c1~v1 + · · · + cn~vn
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Subspace
Claim 3: span(V ) is closed under scalar multiplication.

Proof of Claim 2: Let ~x be an arbitrary vector in span(V ).
Then for some scalars c1, . . . , cn,

~x = c1~v1 + · · · + cn~vn

Now let k ∈ R be an arbitrary scalar. Then

k~x = k (c1~v1 + · · · + cn~vn)

or

Subspace – p.6/8



Subspace
Claim 3: span(V ) is closed under scalar multiplication.

Proof of Claim 2: Let ~x be an arbitrary vector in span(V ).
Then for some scalars c1, . . . , cn,

~x = c1~v1 + · · · + cn~vn

Now let k ∈ R be an arbitrary scalar. Then

k~x = k (c1~v1 + · · · + cn~vn)

or
k~x = (k · c1)~v1 + · · · + (k · cn)~vn

so k~x ∈ span(V ).
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im(A) and span
If T : R

m → R
n with T (~x) = A~x, the image of this

transformation, denoted by im(T ) or im(A), has the
property that if

V = {~a1, . . . ,~am}

is a set of vectors consisting of the m columns of the matrix
A, then

im(A) = span(V )
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im(A) and span
If T : R

m → R
n with T (~x) = A~x, the image of this

transformation, denoted by im(T ) or im(A), has the
property that if

V = {~a1, . . . ,~am}

is a set of vectors consisting of the m columns of the matrix
A, then

im(A) = span(V )

(A proof of this is given in another document)
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Subspaces

The subspaces of R
2 are:

Dimension 2: R
2

Dimension 1: Any line through the origin ~02

Dimension 0:
{

~02

}

(the set consisting only of the zero

vector)
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Subspaces

The subspaces of R
3 are:

Dimension 3: R
3

Dimension 2: Any plane through the origin.

Dimension 1: Any line through the origin.

Dimension 0:
{

~03

}

(the set consisting only of the zero

vector)
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