Span and Image

Gene Quinn

Span

Consider two vectors in \mathbb{R}^{3} :

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Span

Consider two vectors in \mathbb{R}^{3} :

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

If we think of the coordinate axes in \mathbb{R}^{3} as x, y, and z, we can say that \vec{v}_{1} lies along the x-axis, and \vec{v}_{2} lies along the y-axis.

Span

Now think of all of the vectors that lie in the $x y$ plane. The characteristic they have in common is that their z-coordinate is zero.

Span

Now think of all of the vectors that lie in the $x y$ plane. The characteristic they have in common is that their z-coordinate is zero.

In other words, every vector in the $x y$ plane has the form

$$
\vec{w}=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]
$$

for some $x, y \in \mathbb{R}$.

