Span

Gene Quinn

Span

Suppose we have two vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \quad \text { and } \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Span

Suppose we have two vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \quad \text { and } \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

The span of $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is defined to be the set of all vectors that are linear combinations of \vec{v}_{1} and \vec{v}_{2} :

$$
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\left\{\vec{u} \in \mathbb{R}^{3}: \vec{u}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}, c_{1}, c_{2} \in \mathbb{R}\right\}
$$

