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Shears
A shear is a type of linear transformation

T : R
n
→ R

n

that alters one component of the vector it is applied to while
leaving the other components unchanged.

The shear transformation adds a multiple k of another
component to the component being altered.
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Shears
A shear is a type of linear transformation

T : R
n
→ R

n

that alters one component of the vector it is applied to while
leaving the other components unchanged.

The shear transformation adds a multiple k of another
component to the component being altered.
Like all linear transformations, a shear is equivalent to
multiplication by some matrix A:

T (~v) = A~v

for some matrix A.
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Vertical Shears
In the special case of two dimensions,

T : R
2
→ R

2

the matrix A of a vertical shear has the form
[

1 0

k 1

]

where k is a arbitrary constant (positive or negative).
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Vertical Shears
Let’s consider the result of the vertical shear transformation
on an arbitrary element x ∈ R

2, (x1, x2):

T (~x) = A~x =

[

1 0

k 1

] [

x1

x2

]

=

[

x1

kx1 + x2

]
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Vertical Shears
Let’s consider the result of the vertical shear transformation
on an arbitrary element x ∈ R

2, (x1, x2):

T (~x) = A~x =

[

1 0

k 1

] [

x1

x2

]

=

[

x1

kx1 + x2

]

Evidently the effect of this transformation is to add a
multiple of the first component x1 of ~x to the second
component, x2.

The first component x1 is left unchanged.

The second component x2 is replaced by kx1 + x2.
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Vertical Shears
Suppose a linear transformation T : R

2
→ R

2 is defined by:

T (~x) = A~x, for all x ∈ R
2

where

A =

[

1 0

1 1

]

T qualifies as a vertical shear because its associated matrix
A has the required form for a vertical shear:

[

1 0

k 1

]

In this case, k = 1.
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Vertical Shears
Let’s examine the action of T on some vectors in R

2:

let ~x =

[

1

1

]

then T (~x) = A~x =

[

1 0

1 1

] [

1

1

]

=

[

1

2

]
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Vertical Shears

let ~x =

[

−1

1

]

then T (~x) = A~x =

[

1 0

1 1

] [

−1

0

]

=

[

−1

0

]
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Vertical Shears

let ~x =

[

0

2

]

then T (~x) = A~x =

[

1 0

1 1

] [

0

2

]

=

[

0

2

]

In this case, T~x = ~x
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Vertical Shears
This time suppose a linear transformation T : R

2
→ R

2 is
defined by:

T (~x) = A~x, for all x ∈ R
2

where

A =

[

1 0

−0.5 1

]

T qualifies as a vertical shear because its associated matrix
A has the required form for a vertical shear:

[

1 0

k 1

]

In this case, k = −0.5.
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Vertical Shears
Let’s examine the action of T on some vectors in R

2:

let ~x =

[

2

2

]

then T (~x) = A~x =

[

1 0

−0.5 1

] [

2

2

]

=

[

2

1

]
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Vertical Shears

let ~x =

[

−1

−1

]

then T (~x) = A~x =

[

1 0

−0.5 1

] [

−1

−0.5

]

=

[

−0.

−
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Vertical Shears

let ~x =

[

2

−1

]

then T (~x) = A~x =

[

1 0

−0.5 1

] [

2

−1

]

=

[

2

−2

]
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Horizontal Shears
In the special case of two dimensions,

T : R
2
→ R

2

the matrix A of a horizontal shear has the form
[

1 k

0 1

]

where k is a arbitrary constant (positive or negative).
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Horizontal Shears
Let’s consider the result of the horizontal shear
transformation on an arbitrary element x ∈ R

2, (x1, x2):

T (~x) = A~x =

[

1 k

0 1

] [

x1

x2

]

=

[

x1 + kx2

x2

]
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Horizontal Shears
Let’s consider the result of the horizontal shear
transformation on an arbitrary element x ∈ R

2, (x1, x2):

T (~x) = A~x =

[

1 k

0 1

] [

x1

x2

]

=

[

x1 + kx2

x2

]

Evidently the effect of this transformation is to add a
multiple of the second component x2 of ~x to the first
component, x1.

The original first component x1 is replaced by x1 + kx2.

The second component x2 is left unchanged.
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Horizontal Shears
Suppose a linear transformation T : R

2
→ R

2 is defined by:

T (~x) = A~x, for all x ∈ R
2

where

A =

[

1 1

0 1

]

T qualifies as a horizontal shear because its associated
matrix A has the required form for a horizontal shear:

[

1 k

0 1

]

In this case, k = 1.
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Horizontal Shears

let ~x =

[

2

−1

]

then T (~x) = A~x =

[

1 1

0 1

] [

2

−1

]

=

[

1

−1

]
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Horizontal Shears

let ~x =

[

−1

2

]

then T (~x) = A~x =

[

1 1

0 1

] [

−1

2

]

=

[

1

2

]

In this case, T~x = ~x
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Horizontal Shears
This time suppose a linear transformation T : R

2
→ R

2 is
defined by:

T (~x) = A~x, for all x ∈ R
2

where

A =

[

1 −1

0 1

]

T qualifies as a horizontal shear because its associated
matrix A has the required form for a horizontal shear:

[

1 k

0 1

]

In this case, k = −1.
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Horizontal Shears
Let’s examine the action of T on some vectors in R

2:

let ~x =

[

0

2

]

then T (~x) = A~x =

[

1 −1

0 1

] [

0

2

]

=

[

−2

2

]
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Horizontal Shears

let ~x =

[

−1

−1

]

then T (~x) = A~x =

[

1 −1

0 1

] [

−1

−1

]

=

[

0

−1

]
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Horizontal Shears

let ~x =

[

0

1

]

then T (~x) = A~x =

[

1 −1

0 1

] [

0

1

]

=

[

−1

1

]
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