Shears

Gene Quinn

Shears

A shear is a type of linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

that alters one component of the vector it is applied to while leaving the other components unchanged.
The shear transformation adds a multiple k of another component to the component being altered.

Shears

A shear is a type of linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

that alters one component of the vector it is applied to while leaving the other components unchanged.
The shear transformation adds a multiple k of another component to the component being altered.
Like all linear transformations, a shear is equivalent to multiplication by some matrix A :

$$
T(\vec{v})=A \vec{v}
$$

for some matrix A.

Vertical Shears

In the special case of two dimensions,

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

the matrix A of a vertical shear has the form

$$
\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]
$$

where k is a arbitrary constant (positive or negative).

Vertical Shears

Let's consider the result of the vertical shear transformation on an arbitrary element $x \in \mathbb{R}^{2},\left(x_{1}, x_{2}\right)$:

$$
T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
k x_{1}+x_{2}
\end{array}\right]
$$

Vertical Shears

Let's consider the result of the vertical shear transformation on an arbitrary element $x \in \mathbb{R}^{2},\left(x_{1}, x_{2}\right)$:

$$
T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
k x_{1}+x_{2}
\end{array}\right]
$$

Evidently the effect of this transformation is to add a multiple of the first component x_{1} of \vec{x} to the second component, x_{2}.

The first component x_{1} is left unchanged.
The second component x_{2} is replaced by $k x_{1}+x_{2}$.

Vertical Shears

Suppose a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by:

$$
T(\vec{x})=A \vec{x}, \quad \text { for all } x \in \mathbb{R}^{2}
$$

where

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

T qualifies as a vertical shear because its associated matrix A has the required form for a vertical shear:

$$
\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]
$$

In this case, $k=1$.

Vertical Shears

Let's examine the action of T on some vectors in \mathbb{R}^{2} :

$$
\text { let } \vec{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { then } T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Vertical Shears

let $\vec{x}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{r}-1 \\ 0\end{array}\right]=\left[\begin{array}{r}-1 \\ 0\end{array}\right]$

Vertical Shears

$$
\text { let } \vec{x}=\left[\begin{array}{l}
0 \\
2
\end{array}\right] \text { then } T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

In this case, $T \vec{x}=\vec{x}$

Vertical Shears

This time suppose a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by:

$$
T(\vec{x})=A \vec{x}, \quad \text { for all } x \in \mathbb{R}^{2}
$$

where

$$
A=\left[\begin{array}{rr}
1 & 0 \\
-0.5 & 1
\end{array}\right]
$$

T qualifies as a vertical shear because its associated matrix A has the required form for a vertical shear:

$$
\left[\begin{array}{cc}
1 & 0 \\
k & 1
\end{array}\right]
$$

In this case, $k=-0.5$.

Vertical Shears

Let's examine the action of T on some vectors in \mathbb{R}^{2} :
let $\vec{x}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{rr}1 & 0 \\ -0.5 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$

Vertical Shears

let $\vec{x}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{rr}1 & 0 \\ -0.5 & 1\end{array}\right]\left[\begin{array}{r}-1 \\ -0.5\end{array}\right]=\left[\begin{array}{r}-0 . \\ -\end{array}\right.$

Vertical Shears

let $\vec{x}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{rr}1 & 0 \\ -0.5 & 1\end{array}\right]\left[\begin{array}{r}2 \\ -1\end{array}\right]=\left[\begin{array}{r}2 \\ -2\end{array}\right]$

Horizontal Shears

In the special case of two dimensions,

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

the matrix A of a horizontal shear has the form

$$
\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]
$$

where k is a arbitrary constant (positive or negative).

Horizontal Shears

Let's consider the result of the horizontal shear transformation on an arbitrary element $x \in \mathbb{R}^{2},\left(x_{1}, x_{2}\right)$:

$$
T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+k x_{2} \\
x_{2}
\end{array}\right]
$$

Horizontal Shears

Let's consider the result of the horizontal shear transformation on an arbitrary element $x \in \mathbb{R}^{2},\left(x_{1}, x_{2}\right)$:

$$
T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+k x_{2} \\
x_{2}
\end{array}\right]
$$

Evidently the effect of this transformation is to add a multiple of the second component x_{2} of \vec{x} to the first component, x_{1}.

The original first component x_{1} is replaced by $x_{1}+k x_{2}$.
The second component x_{2} is left unchanged.

Horizontal Shears

Suppose a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by:

$$
T(\vec{x})=A \vec{x}, \quad \text { for all } x \in \mathbb{R}^{2}
$$

where

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

T qualifies as a horizontal shear because its associated matrix A has the required form for a horizontal shear:

$$
\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]
$$

In this case, $k=1$.

Horizontal Shears

let $\vec{x}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{r}2 \\ -1\end{array}\right]=\left[\begin{array}{r}1 \\ -1\end{array}\right]$

Horizontal Shears

$$
\text { let } \vec{x}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] \text { then } T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

In this case, $T \vec{x}=\vec{x}$

Horizontal Shears

This time suppose a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by:

$$
T(\vec{x})=A \vec{x}, \quad \text { for all } x \in \mathbb{R}^{2}
$$

where

$$
A=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]
$$

T qualifies as a horizontal shear because its associated matrix A has the required form for a horizontal shear:

$$
\left[\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right]
$$

In this case, $k=-1$.

Horizontal Shears

Let's examine the action of T on some vectors in \mathbb{R}^{2} :
let $\vec{x}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 2\end{array}\right]=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$

Horizontal Shears

let $\vec{x}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}-1 \\ -1\end{array}\right]=\left[\begin{array}{r}0 \\ -1\end{array}\right]$

Horizontal Shears

let $\vec{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$

