

Gene Quinn

Shears

A **shear** is a type of linear transformation

 $T: \mathbb{R}^n \to \mathbb{R}^n$

that alters one component of the vector it is applied to while leaving the other components unchanged.

The shear transformation adds a multiple k of another component to the component being altered.

Shears

A **shear** is a type of linear transformation

 $T:\mathbb{R}^n\to\mathbb{R}^n$

that alters one component of the vector it is applied to while leaving the other components unchanged.

The shear transformation adds a multiple k of another component to the component being altered.

Like all linear transformations, a shear is equivalent to multiplication by some matrix *A*:

$$T(\vec{v}) = A\vec{v}$$

for some matrix A.

In the special case of two dimensions,

$T: \mathbb{R}^2 \to \mathbb{R}^2$

the matrix A of a vertical shear has the form

where k is a **arbitrary** constant (positive or negative).

Let's consider the result of the vertical shear transformation on an arbitrary element $x \in \mathbb{R}^2$, (x_1, x_2) :

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ kx_1 + x_2 \end{bmatrix}$$

Let's consider the result of the vertical shear transformation on an arbitrary element $x \in \mathbb{R}^2$, (x_1, x_2) :

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ kx_1 + x_2 \end{bmatrix}$$

Evidently the effect of this transformation is to add a multiple of the first component x_1 of \vec{x} to the second component, x_2 .

The first component x_1 is left unchanged.

The second component x_2 is replaced by $kx_1 + x_2$.

Suppose a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ is defined by:

$$T(\vec{x}) = A\vec{x}, \text{ for all } x \in \mathbb{R}^2$$

where

$$A = \left[\begin{array}{rrr} 1 & 0 \\ 1 & 1 \end{array} \right]$$

T qualifies as a vertical shear because its associated matrix A has the required form for a vertical shear:

$$\left[\begin{array}{rrr}1&0\\k&1\end{array}\right]$$

In this case, k = 1.

Let's examine the action of T on some vectors in \mathbb{R}^2 :

let
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 then $T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

let
$$\vec{x} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
 then $T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$

In this case, $T\vec{x} = \vec{x}$

This time suppose a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ is defined by:

$$T(\vec{x}) = A\vec{x}, \text{ for all } x \in \mathbb{R}^2$$

where

$$A = \left[\begin{array}{rrr} 1 & 0\\ -0.5 & 1 \end{array} \right]$$

T qualifies as a vertical shear because its associated matrix A has the required form for a vertical shear:

$$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$

In this case, k = -0.5.

Let's examine the action of T on some vectors in \mathbb{R}^2 :

let
$$\vec{x} = \begin{bmatrix} 2\\2 \end{bmatrix}$$
 then $T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 0\\ -0.5 & 1 \end{bmatrix} \begin{bmatrix} 2\\2 \end{bmatrix} = \begin{bmatrix} 2\\1 \end{bmatrix}$

let
$$\vec{x} = \begin{bmatrix} 2\\ -1 \end{bmatrix}$$
 then $T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 0\\ -0.5 & 1 \end{bmatrix} \begin{bmatrix} 2\\ -1 \end{bmatrix} = \begin{bmatrix} 2\\ -2 \end{bmatrix}$

In the special case of two dimensions,

$T:\mathbb{R}^2\to\mathbb{R}^2$

the matrix A of a horizontal shear has the form

$\left[\begin{array}{cc}1&k\\0&1\end{array}\right]$

where k is a **arbitrary** constant (positive or negative).

Let's consider the result of the horizontal shear transformation on an arbitrary element $x \in \mathbb{R}^2$, (x_1, x_2) :

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + kx_2 \\ x_2 \end{bmatrix}$$

Let's consider the result of the horizontal shear transformation on an arbitrary element $x \in \mathbb{R}^2$, (x_1, x_2) :

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + kx_2 \\ x_2 \end{bmatrix}$$

Evidently the effect of this transformation is to add a multiple of the second component x_2 of \vec{x} to the first component, x_1 .

The original first component x_1 is replaced by $x_1 + kx_2$.

The second component x_2 is left unchanged.

Suppose a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ is defined by:

$$T(\vec{x}) = A\vec{x}, \text{ for all } x \in \mathbb{R}^2$$

where

$$A = \left[\begin{array}{rrr} 1 & 1 \\ 0 & 1 \end{array} \right]$$

T qualifies as a horizontal shear because its associated matrix A has the required form for a horizontal shear:

$$\left[\begin{array}{rrr}1&k\\0&1\end{array}\right]$$

In this case, k = 1.

let
$$\vec{x} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
 then $T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

In this case, $T\vec{x} = \vec{x}$

This time suppose a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ is defined by:

$$T(\vec{x}) = A\vec{x}, \text{ for all } x \in \mathbb{R}^2$$

where

$$A = \left[\begin{array}{rrr} 1 & -1 \\ 0 & 1 \end{array} \right]$$

T qualifies as a horizontal shear because its associated matrix A has the required form for a horizontal shear:

$$\left[\begin{array}{rrr}1&k\\0&1\end{array}\right]$$

In this case, k = -1.

Let's examine the action of T on some vectors in \mathbb{R}^2 :

let
$$\vec{x} = \begin{bmatrix} 0\\2 \end{bmatrix}$$
 then $T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & -1\\0 & 1 \end{bmatrix} \begin{bmatrix} 0\\2 \end{bmatrix} = \begin{bmatrix} -2\\2 \end{bmatrix}$

let
$$\vec{x} = \begin{bmatrix} 0\\1 \end{bmatrix}$$
 then $T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & -1\\0 & 1 \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} -1\\1 \end{bmatrix}$