Scalings

Gene Quinn

Scalings

A scaling is a type of linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

that stretches or shrinks the vector it is applied to.

Scalings

A scaling is a type of linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

that stretches or shrinks the vector it is applied to.
Like all linear transformations, a scaling is equivalent to multiplication by some matrix A :

$$
T(\vec{v})=A \vec{v}
$$

for some matrix A.

Scalings

In the special case of two dimensions,

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

the matrix A has the form

$$
\left[\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right]
$$

where k is a positive constant.

Scalings

In the special case of two dimensions,

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

the matrix A has the form

$$
\left[\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right]
$$

where k is a positive constant.
If $k>1$, a scaling transformation is called a dilation

Scalings

In the special case of two dimensions,

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

the matrix A has the form

$$
\left[\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right]
$$

where k is a positive constant.
If $k>1$, a scaling transformation is called a dilation
If $k<1$, a scaling transformation is called a contraction

Scalings

Let's consider the result of a scaling transformation on an arbitrary element $x \in \mathbb{R}^{2},\left(x_{1}, x_{2}\right)$:

$$
T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
k x_{1} \\
k x_{2}
\end{array}\right]=k\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=k \vec{x}
$$

Scalings

Let's consider the result of a scaling transformation on an arbitrary element $x \in \mathbb{R}^{2},\left(x_{1}, x_{2}\right)$:

$$
T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
k x_{1} \\
k x_{2}
\end{array}\right]=k\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=k \vec{x}
$$

Evidently the effect of this transformation is the same as multiplying the vector x by the scalar k.

Scalings

Suppose a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by:

$$
T(\vec{x})=A \vec{x}, \quad \text { for all } x \in \mathbb{R}^{2}
$$

where

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

T qualifies as a scaling because its associated matrix A has the required form for a scaling:

$$
\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]
$$

In this case, $k=2$.

Scalings

Let's examine the action of T on some vectors in \mathbb{R}^{2} :

$$
\text { let } \vec{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { then } T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

Scalings

let $\vec{x}=\left[\begin{array}{r}0.6 \\ 0\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{r}0.6 \\ 0\end{array}\right]=\left[\begin{array}{r}1.2 \\ 0\end{array}\right]$

Scalings

let $\vec{x}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{r}-1 \\ 1\end{array}\right]=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$

Scalings

Apparently the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
T(\vec{x})=A \vec{x}, \quad \text { for all } x \in \mathbb{R}^{2}
$$

with

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

doubles the length of \vec{x} without changing its direction.
We would say in this case that T is a dilation

Scalings

This time suppose a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by:

$$
T(\vec{x})=A \vec{x}, \quad \text { for all } x \in \mathbb{R}^{2}
$$

where

$$
A=\left[\begin{array}{rr}
0.5 & 0 \\
0 & 0.5
\end{array}\right]
$$

T qualifies as a scaling because its associated matrix A has the required form for a scaling:

$$
\left[\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right]
$$

In this case, $k=0.5$.

Scalings

Let's examine the action of T on some vectors in \mathbb{R}^{2} :
let $\vec{x}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{rr}0.5 & 0 \\ 0 & 0.5\end{array}\right]\left[\begin{array}{l}3 \\ 3\end{array}\right]=\left[\begin{array}{l}1.5 \\ 1.5\end{array}\right]$

Scalings

let $\vec{x}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{rr}0.5 & 0 \\ 0 & 0.5\end{array}\right]\left[\begin{array}{l}-1 \\ -2\end{array}\right]=\left[\begin{array}{r}-0.5 \\ -1\end{array}\right.$

Scalings

let $\vec{x}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{rr}0.5 & 0 \\ 0 & 0.5\end{array}\right]\left[\begin{array}{l}0 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Scalings

Apparently the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
T(\vec{x})=A \vec{x}, \quad \text { for all } x \in \mathbb{R}^{2}
$$

with

$$
A=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right]
$$

cuts the length of \vec{x} in half without changing its direction.
We would say in this case that T is a contraction

