Rotation Examples

Gene Quinn

A rotation is a type of linear transformation

 $T: \mathbb{R}^n \to \mathbb{R}^n$

that rotates a vector through an angle θ .

A rotation is a type of linear transformation

 $T: \mathbb{R}^n \to \mathbb{R}^n$

that rotates a vector through an angle θ .

Like all linear transformations, a rotation is equivalent to multiplication by some matrix *A*:

$$T(\vec{v}) = A\vec{v}$$

for some matrix A.

In the special case of two dimensions,

 $T:\mathbb{R}^2\to\mathbb{R}^2$

the matrix A of a rotation has the form

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

where $a^2 + b^2 = 1$.

Consider the linear transformation that rotates a vector through an angle of $\pi/2$ (90 degrees):

$$\cos\frac{\pi}{2} = 0$$
 and $\sin\frac{\pi}{2} = 1$

so that

$$A = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Consider the linear transformation that rotates a vector through an angle of $\pi/2$ (90 degrees):

$$\cos\frac{\pi}{2} = 0$$
 and $\sin\frac{\pi}{2} = 1$

so that

$$A = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

So

$$T\vec{x} = A\vec{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$$

$$T\vec{x} = A\vec{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$$

Evidently the effect of this transformation is to interchange x_1 and x_2 , and reverse the sign of x_2 .

Let's examine the action of T on some vectors in \mathbb{R}^2 :

let
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 then $T(\vec{x}) = A\vec{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Consider the linear transformation that rotates a vector through an angle of $3\pi/2$ (270 degrees):

$$\cos\frac{3\pi}{2} = 0$$
 and $\sin\frac{3\pi}{2} = -1$

so that

$$A = \begin{bmatrix} \cos\frac{3\pi}{2} & -\sin\frac{3\pi}{2} \\ \sin\frac{3\pi}{2} & \cos\frac{3\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Consider the linear transformation that rotates a vector through an angle of $3\pi/2$ (270 degrees):

$$\cos\frac{3\pi}{2} = 0$$
 and $\sin\frac{3\pi}{2} = -1$

so that

$$A = \begin{bmatrix} \cos\frac{3\pi}{2} & -\sin\frac{3\pi}{2} \\ \sin\frac{3\pi}{2} & \cos\frac{3\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

So

$$T\vec{x} = A\vec{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix}$$

$$T\vec{x} = A\vec{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix}$$

Evidently the effect of this transformation is to interchange x_1 and x_2 , and reverse the sign of x_1 .

Let's examine the action of T on some vectors in \mathbb{R}^2 :

let
$$\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 then $T(\vec{x}) = A\vec{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$

let
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 then $T(\vec{x}) = A\vec{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$