Rotation Examples

Gene Quinn

Rotations

A rotation is a type of linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

that rotates a vector through an angle θ.

Rotations

A rotation is a type of linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

that rotates a vector through an angle θ.
Like all linear transformations, a rotation is equivalent to multiplication by some matrix A :

$$
T(\vec{v})=A \vec{v}
$$

for some matrix A.

Rotations

In the special case of two dimensions,

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

the matrix A of a rotation has the form

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]
$$

where $a^{2}+b^{2}=1$.

Rotations

Consider the linear transformation that rotates a vector through an angle of $\pi / 2$ (90 degrees):

$$
\cos \frac{\pi}{2}=0 \quad \text { and } \quad \sin \frac{\pi}{2}=1
$$

so that

$$
A=\left[\begin{array}{rr}
\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\
\sin \frac{\pi}{2} & \cos \frac{\pi}{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Rotations

Consider the linear transformation that rotates a vector through an angle of $\pi / 2$ (90 degrees):

$$
\cos \frac{\pi}{2}=0 \quad \text { and } \quad \sin \frac{\pi}{2}=1
$$

so that

$$
A=\left[\begin{array}{rr}
\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\
\sin \frac{\pi}{2} & \cos \frac{\pi}{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

So

$$
T \vec{x}=A \vec{x}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-x_{2} \\
x_{1}
\end{array}\right]
$$

Rotations

$$
T \vec{x}=A \vec{x}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-x_{2} \\
x_{1}
\end{array}\right]
$$

Evidently the effect of this transformation is to interchange x_{1} and x_{2}, and reverse the sign of x_{2}.

Rotations

Let's examine the action of T on some vectors in \mathbb{R}^{2} :
let $\vec{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$

Rotations

let $\vec{x}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]$

Rotations

let $\vec{x}=\left[\begin{array}{r}0 \\ -1\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{r}0 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Rotations

Consider the linear transformation that rotates a vector through an angle of $3 \pi / 2$ (270 degrees):

$$
\cos \frac{3 \pi}{2}=0 \quad \text { and } \quad \sin \frac{3 \pi}{2}=-1
$$

so that

$$
A=\left[\begin{array}{cr}
\cos \frac{3 \pi}{2} & -\sin \frac{3 \pi}{2} \\
\sin \frac{3 \pi}{2} & \cos \frac{3 \pi}{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Rotations

Consider the linear transformation that rotates a vector through an angle of $3 \pi / 2$ (270 degrees):

$$
\cos \frac{3 \pi}{2}=0 \quad \text { and } \quad \sin \frac{3 \pi}{2}=-1
$$

so that

$$
A=\left[\begin{array}{rr}
\cos \frac{3 \pi}{2} & -\sin \frac{3 \pi}{2} \\
\sin \frac{3 \pi}{2} & \cos \frac{3 \pi}{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

So

$$
T \vec{x}=A \vec{x}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
x_{2} \\
-x_{1}
\end{array}\right]
$$

Rotations

$$
T \vec{x}=A \vec{x}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
x_{2} \\
-x_{1}
\end{array}\right]
$$

Evidently the effect of this transformation is to interchange x_{1} and x_{2}, and reverse the sign of x_{1}.

Rotations

Let's examine the action of T on some vectors in \mathbb{R}^{2} :
let $\vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{r}0 \\ -1\end{array}\right]$

Rotations

let $\vec{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ then $T(\vec{x})=A \vec{x}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{r}1 \\ -1\end{array}\right]$

