Relations

Gene Quinn

Relations

Suppose

$$
V=\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}
$$

is a set of vectors in \mathbb{R}^{m}.

Relations

Suppose

$$
V=\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}
$$

is a set of vectors in \mathbb{R}^{m}.
An equation of the form

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

is called a relation (or linear relation) amont the vectors $\vec{v}_{1} \cdots \vec{v}_{m}$.

Relations

The relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

with $c_{1}=\cdots=c_{m}=0$ is called the trivial relation.

Relations

The relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

with $c_{1}=\cdots=c_{m}=0$ is called the trivial relation.
A relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

with at least one of the c_{i} not equal to zero is called a nontrivial relation.

Relations

The relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

with $c_{1}=\cdots=c_{m}=0$ is called the trivial relation.
A relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

with at least one of the c_{i} not equal to zero is called a nontrivial relation.

The trivial relation exists for any set of vectors V.

Relations

The relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

with $c_{1}=\cdots=c_{m}=0$ is called the trivial relation.
A relation

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

with at least one of the c_{i} not equal to zero is called a nontrivial relation.

The trivial relation exists for any set of vectors V.
For a given set V of vectors, nontrivial relations may or may not exist.

Relations

A set of vectors

$$
V=\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}
$$

is linearly dependent if and only if there exists a nontrivial relation among them.

Relations

Proof: Suppose a nontrivial relation exists among the vectors

$$
V=\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}
$$

That is, there exist scalars c_{1}, \ldots, c_{m} such that

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=0
$$

Relations

Proof: Suppose a nontrivial relation exists among the vectors

$$
V=\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}
$$

That is, there exist scalars c_{1}, \ldots, c_{m} such that

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=0
$$

Let i be the highest index for which $c_{i} \neq 0$. Solving for \vec{v}_{i} gives

$$
\vec{v}_{i}=-\frac{c_{1}}{c_{i}} \vec{v}_{1}-\cdots-\frac{c_{m}}{c_{i}} \vec{v}_{m}
$$

which shows that \vec{v}_{i} is redundant, so the members of V are linearly dependent.

Relations

Now suppose teh vectors in V are linearly dependent. Then there is a redundant vector, say v_{i}, that can be written as a linear combination of the other elements of V :

$$
\vec{v}_{i}=c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}
$$

Relations

Now suppose teh vectors in V are linearly dependent. Then there is a redundant vector, say v_{i}, that can be written as a linear combination of the other elements of V :

$$
\vec{v}_{i}=c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}
$$

In this case a nontrivial relation can be obtained by subtracting \vec{v}_{i} from both sides:

$$
c_{1} \vec{v}_{1}+\cdots-\vec{v}_{i}+\cdots+c_{m} \vec{v}_{m}=0
$$

Relations and Kernels

If A is an $n \times m$ matrix associated with the linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, and \vec{x} is an element of $\operatorname{ker}(A)$, then

$$
A \vec{x}=\overrightarrow{0}
$$

corresponds to a nontrivial relation

$$
A \vec{x}=x_{1} \vec{a}_{1}+\cdots+x_{m} \vec{a}_{m}=0
$$

Relations and Kernels

If A is an $n \times m$ matrix associated with the linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, and \vec{x} is an element of $\operatorname{ker}(A)$, then

$$
A \vec{x}=\overrightarrow{0}
$$

corresponds to a nontrivial relation

$$
A \vec{x}=x_{1} \vec{a}_{1}+\cdots+x_{m} \vec{a}_{m}=0
$$

So, nonzero elements of $\operatorname{ker}(A)$ correspond to nontrivial relations among the columns of A.

