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Linear Independence and Redundancy
The idea of linear independence plays a central role in
linear algebra.

Redundancy – p.2/12



Linear Independence and Redundancy
The idea of linear independence plays a central role in
linear algebra.

In the text, linear independence is defined using the related
concept of redundancy.
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Redundancy
If

V = {~v1, ~v2, . . . , ~vm}

is a set of vectors ~vi ∈ R
n, we say that the vector ~vj is

redundant if ~vj is a linear combination of the vectors with
~v1, . . . , ~vj−1.
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Redundancy
If

V = {~v1, ~v2, . . . , ~vm}

is a set of vectors ~vi ∈ R
n, we say that the vector ~vj is

redundant if ~vj is a linear combination of the vectors with
~v1, . . . , ~vj−1.

That is, if there exists scalars c1, . . . , cj−1 with the property
that

~vj = c1~v1 + · · · + cj−1~vj−1
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Redundancy
Example: Consider the following set of vectors:

V = {~v1, ~v2, ~v3, ~v4} =
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Redundancy
Example: Consider the following set of vectors:
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~v3 is redundant because it is a linear combination of ~v1 and
~v2:

~v1 + 2~v2 = 1
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Redundancy
Example: It’s not always easy to tell if vectors are
redundant. Suppose

V = {~v1, ~v2, ~v3} =
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Redundancy
Example: It’s not always easy to tell if vectors are
redundant. Suppose

V = {~v1, ~v2, ~v3} =
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~v3 is redundant because it is a linear combination of ~v1 and
~v2:

2~v1 − 3~v2 = 2
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Redundancy
In general, how do we determine whether a set has any
redundant vectors?

Here is a procedure that always works:

First, form a matrix A whose columns are the vectors in the
set V :

A =
[

~v1 ~v2 · · · ~vm

]
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Redundancy
In general, how do we determine whether a set has any
redundant vectors?

Here is a procedure that always works:

First, form a matrix A whose columns are the vectors in the
set V :

A =
[

~v1 ~v2 · · · ~vm

]

Next, compute rref(A).

If every one of the m columns of rref(A) contains a leading
1, there are no redundant vectors in V .
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Redundancy
Example: Suppose as before

V = {~v1, ~v2, ~v3} =


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Redundancy
Example: Suppose as before

V = {~v1, ~v2, ~v3} =


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Form a matrix A whose columns are the elements of V :

A =
[

~v1 ~v2 ~v3

]

=
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Redundancy
Compute the reduced row-echelon form rref(A):

rref(A) = rref
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Redundancy
Compute the reduced row-echelon form rref(A):

rref(A) = rref
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If we associate the first column of A and rref(A) with ~v1, the
second with ~v2, and so on, the vector corresponding to the
first column without a leading 1 is redundant.
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Redundancy
Compute the reduced row-echelon form rref(A):

rref(A) = rref







2 −2 10

1 −1 5

1 2 −4






=


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

1 0 2

0 1 −3

0 0 0







If we associate the first column of A and rref(A) with ~v1, the
second with ~v2, and so on, the vector corresponding to the
first column without a leading 1 is redundant.

In this case, ~v3 is redundant because the first column
without a leading 1 is column 3, which corresponds to ~v3.

We can also tell from rref(A) that 2~v1 − 3~V2 = ~v3.
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Redundancy
Example: This time let

V = {~v1, ~v2} =


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Redundancy
Example: This time let

V = {~v1, ~v2} =


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Form a matrix A whose columns are the elements of V :

A =
[

~v1 ~v2

]

=
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Redundancy
Compute the reduced row-echelon form rref(A):

rref(A) = rref
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Redundancy
Compute the reduced row-echelon form rref(A):

rref(A) = rref
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Since every column of rref(A) contains a leading 1, there
are no redundant vectors in V .
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Redundancy
Compute the reduced row-echelon form rref(A):

rref(A) = rref
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Since every column of rref(A) contains a leading 1, there
are no redundant vectors in V .

Based on Definition 3.2.3 on page 115, we would also say
that ~v1 and ~v2 are linearly independent.
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Redundancy
Example: This time suppose

V =
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Redundancy
Example: This time suppose

V =

















3

1

3













1

4

2













−2

14

2













2

5

7













−1

3

5

















Form a matrix A whose columns are the elements of V :

A =
[

~v1 ~v2 ~v3 ~v4 ~v5

]

=
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Redundancy
Compute the reduced row-echelon form rref(A):

rref(A) = rref
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Redundancy
Compute the reduced row-echelon form rref(A):

rref(A) = rref
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From rref(A) we see that ~v3 and ~v5 are redundant.
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Redundancy
Compute the reduced row-echelon form rref(A):

rref(A) = rref


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From rref(A) we see that ~v3 and ~v5 are redundant.

Based on Definition 3.2.3 on page 115, we would also say
that ~v1, ~v2, and ~v4 are linearly independent.
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Redundancy
Compute the reduced row-echelon form rref(A):

rref(A) = rref


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
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From rref(A) we see that ~v3 and ~v5 are redundant.

Based on Definition 3.2.3 on page 115, we would also say
that ~v1, ~v2, and ~v4 are linearly independent.

In general, the subset of V consisting of all of the elements
of V corresponding to columns of rref(A) that contain
leading ones is a linearly independent set of vectors.
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