Redundancy

Gene Quinn

Linear Independence and Redundancy

The idea of linear independence plays a central role in linear algebra.

Linear Independence and Redundancy

The idea of linear independence plays a central role in linear algebra.

In the text, linear independence is defined using the related concept of redundancy.

Redundancy

If

$$
V=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}
$$

is a set of vectors $\vec{v}_{i} \in \mathbb{R}^{n}$, we say that the vector \vec{v}_{j} is redundant if \vec{v}_{j} is a linear combination of the vectors with $\vec{v}_{1}, \ldots, \vec{v}_{j-1}$.

Redundancy

If

$$
V=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}
$$

is a set of vectors $\vec{v}_{i} \in \mathbb{R}^{n}$, we say that the vector \vec{v}_{j} is redundant if \vec{v}_{j} is a linear combination of the vectors with $\vec{v}_{1}, \ldots, \vec{v}_{j-1}$.

That is, if there exists scalars c_{1}, \ldots, c_{j-1} with the property that

$$
\vec{v}_{j}=c_{1} \vec{v}_{1}+\cdots+c_{j-1} \vec{v}_{j-1}
$$

Redundancy

Example: Consider the following set of vectors:

$$
V=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]\right\}
$$

Redundancy

Example: Consider the following set of vectors:

$$
V=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]\right\}
$$

\vec{v}_{3} is redundant because it is a linear combination of \vec{v}_{1} and \vec{v}_{2} :

$$
\vec{v}_{1}+2 \vec{v}_{2}=1\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\vec{v}_{3}
$$

Redundancy

Example: It's not always easy to tell if vectors are redundant. Suppose

$$
V=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\left\{\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\left[\begin{array}{r}
-2 \\
-1 \\
2
\end{array}\right]\left[\begin{array}{r}
10 \\
5 \\
-4
\end{array}\right]\right\}
$$

Redundancy

Example: It's not always easy to tell if vectors are redundant. Suppose

$$
V=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\left\{\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\left[\begin{array}{r}
-2 \\
-1 \\
2
\end{array}\right]\left[\begin{array}{r}
10 \\
5 \\
-4
\end{array}\right]\right\}
$$

\vec{v}_{3} is redundant because it is a linear combination of \vec{v}_{1} and \vec{v}_{2} :

$$
2 \vec{v}_{1}-3 \vec{v}_{2}=2\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]-3\left[\begin{array}{r}
-2 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{r}
10 \\
5 \\
4
\end{array}\right]=\vec{v}_{3}
$$

Redundancy

In general, how do we determine whether a set has any redundant vectors?

Here is a procedure that always works:
First, form a matrix A whose columns are the vectors in the set V :

$$
A=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{m}
\end{array}\right]
$$

Redundancy

In general, how do we determine whether a set has any redundant vectors?

Here is a procedure that always works:
First, form a matrix A whose columns are the vectors in the set V :

$$
A=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{m}
\end{array}\right]
$$

Next, compute $\operatorname{rref}(A)$.
If every one of the m columns of $\operatorname{rref}(A)$ contains a leading 1 , there are no redundant vectors in V.

Redundancy

Example: Suppose as before

$$
V=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\left\{\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\left[\begin{array}{r}
-2 \\
-1 \\
2
\end{array}\right]\left[\begin{array}{r}
10 \\
5 \\
-4
\end{array}\right]\right\}
$$

Redundancy

Example: Suppose as before

$$
V=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\left\{\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\left[\begin{array}{r}
-2 \\
-1 \\
2
\end{array}\right]\left[\begin{array}{r}
10 \\
5 \\
-4
\end{array}\right]\right\}
$$

Form a matrix A whose columns are the elements of V :

$$
A=\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right]=\left[\begin{array}{rrr}
2 & -2 & 10 \\
1 & -1 & 5 \\
1 & 2 & -4
\end{array}\right]
$$

Redundancy

Compute the reduced row-echelon form $\operatorname{rref}(A)$:

$$
\operatorname{rref}(A)=\operatorname{rref}\left[\begin{array}{rrr}
2 & -2 & 10 \\
1 & -1 & 5 \\
1 & 2 & -4
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right]
$$

Redundancy

Compute the reduced row-echelon form $\operatorname{rref}(A)$:

$$
\operatorname{rref}(A)=\operatorname{rref}\left[\begin{array}{rrr}
2 & -2 & 10 \\
1 & -1 & 5 \\
1 & 2 & -4
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right]
$$

If we associate the first column of A and $\operatorname{rref}(A)$ with \vec{v}_{1}, the second with \vec{v}_{2}, and so on, the vector corresponding to the first column without a leading 1 is redundant.

Redundancy

Compute the reduced row-echelon form $\operatorname{rref}(A)$:

$$
\operatorname{rref}(A)=\operatorname{rref}\left[\begin{array}{rrr}
2 & -2 & 10 \\
1 & -1 & 5 \\
1 & 2 & -4
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right]
$$

If we associate the first column of A and $\operatorname{rref}(A)$ with \vec{v}_{1}, the second with \vec{v}_{2}, and so on, the vector corresponding to the first column without a leading 1 is redundant.

In this case, \vec{v}_{3} is redundant because the first column without a leading 1 is column 3 , which corresponds to \vec{v}_{3}.

We can also tell from $\operatorname{rref}(A)$ that $2 \vec{v}_{1}-3 \vec{V}_{2}=\vec{v}_{3}$.

Redundancy

Example: This time let

$$
V=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\left\{\left[\begin{array}{l}
3 \\
1 \\
5 \\
6
\end{array}\right]\left[\begin{array}{r}
-1 \\
4 \\
2 \\
3
\end{array}\right]\right\}
$$

Redundancy

Example: This time let

$$
V=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\left\{\left[\begin{array}{l}
3 \\
1 \\
5 \\
6
\end{array}\right]\left[\begin{array}{r}
-1 \\
4 \\
2 \\
3
\end{array}\right]\right\}
$$

Form a matrix A whose columns are the elements of V :

$$
A=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
3 & -1 \\
1 & 4 \\
5 & 2 \\
6 & 3
\end{array}\right]
$$

Redundancy

Compute the reduced row-echelon form $\operatorname{rref}(A)$:

$$
\operatorname{rref}(A)=\operatorname{rref}\left[\begin{array}{rr}
3 & -1 \\
1 & 4 \\
5 & 2 \\
6 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Redundancy

Compute the reduced row-echelon form $\operatorname{rref}(A)$:

$$
\operatorname{rref}(A)=\operatorname{rref}\left[\begin{array}{rr}
3 & -1 \\
1 & 4 \\
5 & 2 \\
6 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Since every column of $\operatorname{rref}(A)$ contains a leading 1, there are no redundant vectors in V.

Redundancy

Compute the reduced row-echelon form $\operatorname{rref}(A)$:

$$
\operatorname{rref}(A)=\operatorname{rref}\left[\begin{array}{rr}
3 & -1 \\
1 & 4 \\
5 & 2 \\
6 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Since every column of $\operatorname{rref}(A)$ contains a leading 1, there are no redundant vectors in V.

Based on Definition 3.2.3 on page 115, we would also say that \vec{v}_{1} and \vec{v}_{2} are linearly independent.

Redundancy

Example: This time suppose

$$
V=\left\{\left[\begin{array}{l}
3 \\
1 \\
3
\end{array}\right]\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right]\left[\begin{array}{r}
-2 \\
14 \\
2
\end{array}\right]\left[\begin{array}{l}
2 \\
5 \\
7
\end{array}\right]\left[\begin{array}{r}
-1 \\
3 \\
5
\end{array}\right]\right\}
$$

Redundancy

Example: This time suppose

$$
V=\left\{\left[\begin{array}{l}
3 \\
1 \\
3
\end{array}\right]\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right]\left[\begin{array}{r}
-2 \\
14 \\
2
\end{array}\right]\left[\begin{array}{l}
2 \\
5 \\
7
\end{array}\right]\left[\begin{array}{r}
-1 \\
3 \\
5
\end{array}\right]\right\}
$$

Form a matrix A whose columns are the elements of V :

$$
A=\left[\begin{array}{lllll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4} & \vec{v}_{5}
\end{array}\right]=\left[\begin{array}{rrrrr}
3 & 1 & -2 & 2 & -1 \\
1 & 4 & 14 & 5 & 3 \\
3 & 2 & 2 & 7 & 5
\end{array}\right]
$$

Redundancy

Compute the reduced row-echelon form $\operatorname{rref}(A)$:
$\operatorname{rref}(A)=\operatorname{rref}\left[\begin{array}{rrrrr}3 & 1 & -2 & 2 & -1 \\ 1 & 4 & 14 & 5 & 3 \\ 3 & 2 & 2 & 7 & 5\end{array}\right]=\left[\begin{array}{rrrrr}1 & 0 & -2 & 0 & -1 \\ 0 & 1 & 4 & 0 & -\frac{2}{3} \\ 0 & 0 & 0 & 1 & \frac{4}{3}\end{array}\right]$

Redundancy

Compute the reduced row-echelon form $\operatorname{rref}(A)$:
$\operatorname{rref}(A)=\operatorname{rref}\left[\begin{array}{rrrrr}3 & 1 & -2 & 2 & -1 \\ 1 & 4 & 14 & 5 & 3 \\ 3 & 2 & 2 & 7 & 5\end{array}\right]=\left[\begin{array}{rrrrr}1 & 0 & -2 & 0 & -1 \\ 0 & 1 & 4 & 0 & -\frac{2}{3} \\ 0 & 0 & 0 & 1 & \frac{4}{3}\end{array}\right]$
From $\operatorname{rref}(A)$ we see that \vec{v}_{3} and \vec{v}_{5} are redundant.

Redundancy

Compute the reduced row-echelon form $\operatorname{rref}(A)$:
$\operatorname{rref}(A)=\operatorname{rref}\left[\begin{array}{rrrrr}3 & 1 & -2 & 2 & -1 \\ 1 & 4 & 14 & 5 & 3 \\ 3 & 2 & 2 & 7 & 5\end{array}\right]=\left[\begin{array}{rrrrr}1 & 0 & -2 & 0 & -1 \\ 0 & 1 & 4 & 0 & -\frac{2}{3} \\ 0 & 0 & 0 & 1 & \frac{4}{3}\end{array}\right]$

From $\operatorname{rref}(A)$ we see that \vec{v}_{3} and \vec{v}_{5} are redundant.
Based on Definition 3.2.3 on page 115, we would also say that \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{4} are linearly independent.

Redundancy

Compute the reduced row-echelon form $\operatorname{rref}(A)$:
$\operatorname{rref}(A)=\operatorname{rref}\left[\begin{array}{rrrrr}3 & 1 & -2 & 2 & -1 \\ 1 & 4 & 14 & 5 & 3 \\ 3 & 2 & 2 & 7 & 5\end{array}\right]=\left[\begin{array}{rrrrr}1 & 0 & -2 & 0 & -1 \\ 0 & 1 & 4 & 0 & -\frac{2}{3} \\ 0 & 0 & 0 & 1 & \frac{4}{3}\end{array}\right]$

From $\operatorname{rref}(A)$ we see that \vec{v}_{3} and \vec{v}_{5} are redundant.
Based on Definition 3.2.3 on page 115, we would also say that \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{4} are linearly independent.

In general, the subset of V consisting of all of the elements of V corresponding to columns of $\operatorname{rref}(A)$ that contain leading ones is a linearly independent set of vectors.

