Proof that $\operatorname{ker}(T)$ is a Subspace of \mathbb{R}^{n}

Gene Quinn

Kernels and Subspaces

Suppose

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

is a linear transformation with domain \mathbb{R}^{m} and codomain \mathbb{R}^{n}.

Kernels and Subspaces

Suppose

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

is a linear transformation with domain \mathbb{R}^{m} and codomain \mathbb{R}^{n}.
In this situation, the kernel of T is defined as:

$$
\operatorname{ker}(T)=\left\{\vec{x} \in \mathbb{R}^{m}: \text { such that } T(\vec{x})=\overrightarrow{0} \in \mathbb{R}^{n}\right\}
$$

Kernels and Subspaces

Suppose

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

is a linear transformation with domain \mathbb{R}^{m} and codomain \mathbb{R}^{n}.
In this situation, the kernel of T is defined as:

$$
\operatorname{ker}(T)=\left\{\vec{x} \in \mathbb{R}^{m}: \text { such that } T(\vec{x})=\overrightarrow{0} \in \mathbb{R}^{n}\right\}
$$

The set-builder notation would be read as "The set of all vectors \vec{x} in \mathbb{R}^{m} such that $T(\vec{x})$ is the zero vector in $\mathbb{R}^{n} \quad$ ".

Kernels and Subspaces

Theorem: For any linear transformation

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n},
$$

the kernel of T is a subspace (of \mathbb{R}^{m}).

Kernels and Subspaces

Theorem: For any linear transformation

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n},
$$

the kernel of T is a subspace (of \mathbb{R}^{m}).
Proof: In order to prove that $\operatorname{ker}(T)$ is a subspace, we must establish the following three claims:

- $\overrightarrow{0}_{m} \in \operatorname{ker}(T)$
- $\operatorname{ker}(T)$ is closed under addition
- $\operatorname{ker}(T)$ is closed under scalar multiplication

Kernels and Subspaces

Claim 1: $\overrightarrow{0}_{m} \in \operatorname{ker}(T)$
Proof of Claim 1: By an earlier theorem, there exists an $n \times m$ matrix A with the property that

$$
T(\vec{x})=A \vec{x} \quad \forall \vec{x} \in \mathbb{R}^{m}
$$

Kernels and Subspaces

Claim 1: $\overrightarrow{0}_{m} \in \operatorname{ker}(T)$
Proof of Claim 1: By an earlier theorem, there exists an $n \times m$ matrix A with the property that

$$
T(\vec{x})=A \vec{x} \quad \forall \vec{x} \in \mathbb{R}^{m}
$$

Let \vec{x} be the zero vector in $\mathbb{R}^{m}, \overrightarrow{0}_{m}$.
Then by the properties of matrix multiplication,

$$
A \overrightarrow{0}_{m}=\overrightarrow{0}_{n}
$$

for any $n \times m$ matrix A. Therefore, $A \overrightarrow{0}_{m}=T\left(\overrightarrow{0}_{m}\right)=\overrightarrow{0}_{n}$, and so by definition $\overrightarrow{0}_{m}$ is in $\operatorname{ker}(T)$.

Kernels and Subspaces

Claim 2: $\operatorname{ker}(T)$ is closed under addition.
Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^{m}$ be arbitrary elements of $\operatorname{ker}(T)$. We need to show that $\vec{u}+\vec{v} \in \operatorname{ker}(T)$.

Kernels and Subspaces

Claim 2: $\operatorname{ker}(T)$ is closed under addition.
Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^{m}$ be arbitrary elements of $\operatorname{ker}(T)$. We need to show that $\vec{u}+\vec{v} \in \operatorname{ker}(T)$.

By the definition of $\operatorname{ker}(T)$,

$$
T(\vec{u})=A \vec{u}=\overrightarrow{0}_{n} \quad \text { and } \quad T(\vec{v})=A \vec{v}=\overrightarrow{0}_{n}
$$

Kernels and Subspaces

Claim 2: $\operatorname{ker}(T)$ is closed under addition.
Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^{m}$ be arbitrary elements of $\operatorname{ker}(T)$. We need to show that $\vec{u}+\vec{v} \in \operatorname{ker}(T)$.

By the definition of $\operatorname{ker}(T)$,

$$
T(\vec{u})=A \vec{u}=\overrightarrow{0}_{n} \quad \text { and } \quad T(\vec{v})=A \vec{v}=\overrightarrow{0}_{n}
$$

By the properties of vector addition, $\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} \in \mathbb{R}^{n}$.

Kernels and Subspaces

Claim 2: $\operatorname{ker}(T)$ is closed under addition.
Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^{m}$ be arbitrary elements of $\operatorname{ker}(T)$. We need to show that $\vec{u}+\vec{v} \in \operatorname{ker}(T)$.

By the definition of $\operatorname{ker}(T)$,

$$
T(\vec{u})=A \vec{u}=\overrightarrow{0}_{n} \quad \text { and } \quad T(\vec{v})=A \vec{v}=\overrightarrow{0}_{n}
$$

By the properties of vector addition, $\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} \in \mathbb{R}^{n}$.
By the properties of linear transformations,

$$
T(\vec{u}+\vec{v})=A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}=\overrightarrow{0}_{n}+\overrightarrow{0}_{n}=\overrightarrow{0}_{n}
$$

and therefore $\vec{u}+\vec{v} \in \operatorname{ker}(T)$.

Kernels and Subspaces

Claim 3: $\operatorname{ker}(T)$ is closed under scalar multiplication.
Proof of Claim 3: Let $\vec{u} \in \mathbb{R}^{n}$ be an arbitrary element of $\operatorname{ker}(T)$ and $k \in \mathbb{R}$ an arbitrary scalar. We need to show that $k \vec{u} \in \operatorname{ker}(T)$.

Kernels and Subspaces

Claim 3: $\operatorname{ker}(T)$ is closed under scalar multiplication.
Proof of Claim 3: Let $\vec{u} \in \mathbb{R}^{n}$ be an arbitrary element of $\operatorname{ker}(T)$ and $k \in \mathbb{R}$ an arbitrary scalar. We need to show that $k \vec{u} \in k e r(T)$.

By the definition of $\operatorname{ker}(T)$,

$$
T(\vec{u})=A \vec{u}=\overrightarrow{0}_{n}
$$

Kernels and Subspaces

Since \mathbb{R}^{m} is a subspace of itself, it is closed under scalar multiplication, and therefore for any real number $k, k \vec{u} \in \mathbb{R}^{m}$.

Kernels and Subspaces

Since \mathbb{R}^{m} is a subspace of itself, it is closed under scalar multiplication, and therefore for any real number $k, k \vec{u} \in \mathbb{R}^{m}$.

By the properties of linear transformations,

$$
T(k \vec{u})=A(k \vec{u})=k A \vec{u}=k \overrightarrow{0}_{n}=\overrightarrow{0}_{n}
$$

and therefore $k \vec{u} \in \operatorname{ker}(T)$.

Kernels and Subspaces

Since \mathbb{R}^{m} is a subspace of itself, it is closed under scalar multiplication, and therefore for any real number $k, k \vec{u} \in \mathbb{R}^{m}$.

By the properties of linear transformations,

$$
T(k \vec{u})=A(k \vec{u})=k A \vec{u}=k \overrightarrow{0}_{n}=\overrightarrow{0}_{n}
$$

and therefore $k \vec{u} \in \operatorname{ker}(T)$.
This completes the proof that $\operatorname{ker}(T)$ is a subspace.

