Proof that $i m\left(\mathbb{R}^{m}\right)$ is a Subspace of \mathbb{R}^{n}

Gene Quinn

Images and Subspaces

Suppose

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

is a linear transformation with domain \mathbb{R}^{m} and codomain \mathbb{R}^{n}.

Images and Subspaces

Suppose

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

is a linear transformation with domain \mathbb{R}^{m} and codomain \mathbb{R}^{n}.
In this situation, the image under T of \mathbb{R}^{m} is defined as:

$$
\operatorname{im}(T)=\left\{\vec{y} \in \mathbb{R}^{n}: \exists \vec{x} \in \mathbb{R}^{m} \text { such that } T(\vec{x})=\vec{y}\right\}
$$

Images and Subspaces

Suppose

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

is a linear transformation with domain \mathbb{R}^{m} and codomain \mathbb{R}^{n}.
In this situation, the image under T of \mathbb{R}^{m} is defined as:

$$
\operatorname{im}(T)=\left\{\vec{y} \in \mathbb{R}^{n}: \exists \vec{x} \in \mathbb{R}^{m} \text { such that } T(\vec{x})=\vec{y}\right\}
$$

The set-builder notation would be read as "The set of all vectors \vec{y} in \mathbb{R}^{n} for which there exists a vector \vec{x} in \mathbb{R}^{m} such that $T(\vec{x})=\vec{y} \quad$.

Images and Subspaces

Theorem: For any linear transformation

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n},
$$

the image under T of $\mathbb{R}^{m}, \operatorname{im}(T)$, is a subspace (of \mathbb{R}^{n}).

Images and Subspaces

Theorem: For any linear transformation

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n},
$$

the image under T of $\mathbb{R}^{m}, \operatorname{im}(T)$, is a subspace (of \mathbb{R}^{n}).
Proof: In order to prove that $\operatorname{im}(T)$ is a subspace, we must establish the following three claims:

- $\overrightarrow{0}_{n} \in \operatorname{im}(T)$
- $i m(T)$ is closed under addition
- $\operatorname{im}(T)$ is closed under scalar multiplication

Images and Subspaces

Claim 1: $\overrightarrow{0}_{n} \in \operatorname{im}(T)$
Proof of Claim 1: By an earlier theorem, there exists an $n \times m$ matrix A with the property that

$$
T(\vec{x})=A \vec{x} \quad \forall \vec{x} \in \mathbb{R}^{m}
$$

Images and Subspaces

Claim 1: $\overrightarrow{0}_{n} \in \operatorname{im}(T)$
Proof of Claim 1: By an earlier theorem, there exists an $n \times m$ matrix A with the property that

$$
T(\vec{x})=A \vec{x} \quad \forall \vec{x} \in \mathbb{R}^{m}
$$

Let \vec{x} be the zero vector in $\mathbb{R}^{m}, \overrightarrow{0}_{m}$.
Then by the properties of matrix multiplication,

$$
A \overrightarrow{0}_{m}=\overrightarrow{0}_{n}
$$

for any $n \times m$ matrix A. Therefore, $A \overrightarrow{0}_{m}=T\left(\overrightarrow{0}_{m}\right)=\overrightarrow{0}_{n}$, and so by definition $\overrightarrow{0}_{n}$ is in $\operatorname{im}(T)$.

Images and Subspaces

Claim 2: $\operatorname{im}(T)$ is closed under addition.
Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ be arbitrary elements of $i m(T)$. We need to show that $\vec{u}+\vec{v} \in \operatorname{im}(T)$.

Images and Subspaces

Claim 2: $\operatorname{im}(T)$ is closed under addition.
Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ be arbitrary elements of $i m(T)$. We need to show that $\vec{u}+\vec{v} \in \operatorname{im}(T)$.

By the definition of $\operatorname{im}(T)$, there are vectors $\vec{x}, \vec{y} \in \mathbb{R}^{m}$ such that

$$
T(\vec{x})=A \vec{x}=\vec{u} \quad \text { and } \quad T(\vec{y})=A \vec{y}=\vec{v}
$$

Images and Subspaces

Claim 2: $\operatorname{im}(T)$ is closed under addition.
Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ be arbitrary elements of $i m(T)$. We need to show that $\vec{u}+\vec{v} \in \operatorname{im}(T)$.

By the definition of $\operatorname{im}(T)$, there are vectors $\vec{x}, \vec{y} \in \mathbb{R}^{m}$ such that

$$
T(\vec{x})=A \vec{x}=\vec{u} \quad \text { and } \quad T(\vec{y})=A \vec{y}=\vec{v}
$$

Since \mathbb{R}^{m} is a subspace of itself, it is closed under addition, and therefore $\vec{x}+\vec{y} \in \mathbb{R}^{m}$.

Images and Subspaces

Claim 2: $\operatorname{im}(T)$ is closed under addition.
Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ be arbitrary elements of $i m(T)$. We need to show that $\vec{u}+\vec{v} \in \operatorname{im}(T)$.

By the definition of $\operatorname{im}(T)$, there are vectors $\vec{x}, \vec{y} \in \mathbb{R}^{m}$ such that

$$
T(\vec{x})=A \vec{x}=\vec{u} \quad \text { and } \quad T(\vec{y})=A \vec{y}=\vec{v}
$$

Since \mathbb{R}^{m} is a subspace of itself, it is closed under addition, and therefore $\vec{x}+\vec{y} \in \mathbb{R}^{m}$.

By the properties of linear transformations,

$$
T(\vec{x}+\vec{y})=A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}=\vec{u}+\vec{v}
$$

and therefore $\vec{u}+\vec{v} \in \operatorname{im}(T)$.

Images and Subspaces

Claim 3: $\operatorname{im}(T)$ is closed under scalar multiplication.
Proof of Claim 3: Let $\vec{u} \in \mathbb{R}^{n}$ be an arbitrary element of $\operatorname{im}(T)$ and $k \in \mathbb{R}$ an arbitrary scalar. We need to show that $k \vec{u} \in i m(T)$.

Images and Subspaces

Claim 3: $\operatorname{im}(T)$ is closed under scalar multiplication.
Proof of Claim 3: Let $\vec{u} \in \mathbb{R}^{n}$ be an arbitrary element of $\operatorname{im}(T)$ and $k \in \mathbb{R}$ an arbitrary scalar. We need to show that $k \vec{u} \in \operatorname{im}(T)$.

By the definition of $\operatorname{im}(T)$, there is a vector $\vec{x} \in \mathbb{R}^{m}$ such that

$$
T(\vec{x})=A \vec{x}=\vec{u}
$$

Images and Subspaces

Since \mathbb{R}^{m} is a subspace of itself, it is closed under scalar multiplication, and therefore for any real number $k, k \vec{x} \in \mathbb{R}^{m}$.

Images and Subspaces

Since \mathbb{R}^{m} is a subspace of itself, it is closed under scalar multiplication, and therefore for any real number $k, k \vec{x} \in \mathbb{R}^{m}$.

By the properties of linear transformations,

$$
T(k \vec{x})=A(k \vec{x})=k A \vec{x}=k \vec{u}
$$

and therefore $k \vec{u} \in i m(T)$.

Images and Subspaces

Since \mathbb{R}^{m} is a subspace of itself, it is closed under scalar multiplication, and therefore for any real number $k, k \vec{x} \in \mathbb{R}^{m}$.

By the properties of linear transformations,

$$
T(k \vec{x})=A(k \vec{x})=k A \vec{x}=k \vec{u}
$$

and therefore $k \vec{u} \in i m(T)$.
This completes the proof that $i m(T)$ is a subspace.

