Proof that $im(\mathbb{R}^m)$ is a Subspace of \mathbb{R}^n

Gene Quinn

Suppose

$$T:\mathbb{R}^m\to\mathbb{R}^n$$

is a linear transformation with domain \mathbb{R}^m and codomain \mathbb{R}^n .

Suppose

 $T: \mathbb{R}^m \to \mathbb{R}^n$

is a linear transformation with domain \mathbb{R}^m and codomain \mathbb{R}^n . In this situation, the *image* under *T* of \mathbb{R}^m is defined as:

 $im(T) = \{ \vec{y} \in \mathbb{R}^n : \exists \vec{x} \in \mathbb{R}^m \text{ such that } T(\vec{x}) = \vec{y} \}$

Suppose

 $T: \mathbb{R}^m \to \mathbb{R}^n$

is a linear transformation with domain \mathbb{R}^m and codomain \mathbb{R}^n . In this situation, the *image* under *T* of \mathbb{R}^m is defined as:

 $im(T) = \{ \vec{y} \in \mathbb{R}^n : \exists \vec{x} \in \mathbb{R}^m \text{ such that } T(\vec{x}) = \vec{y} \}$

The set-builder notation would be read as "The set of all vectors \vec{y} in \mathbb{R}^n for which there exists a vector \vec{x} in \mathbb{R}^m such that $T(\vec{x}) = \vec{y}$ ".

Theorem: For any linear transformation

 $T: \mathbb{R}^m \to \mathbb{R}^n,$

the image under T of \mathbb{R}^m , im(T), is a subspace (of \mathbb{R}^n).

Theorem: For any linear transformation

 $T: \mathbb{R}^m \to \mathbb{R}^n,$

the image under T of \mathbb{R}^m , im(T), is a subspace (of \mathbb{R}^n).

Proof: In order to prove that im(T) is a subspace, we must establish the following three claims:

•
$$\vec{0}_n \in im(T)$$

- im(T) is closed under addition
- im(T) is closed under scalar multiplication

Claim 1: $\vec{0}_n \in im(T)$

Proof of Claim 1: By an earlier theorem, there exists an $n \times m$ matrix A with the property that

$$T(\vec{x}) = A\vec{x} \quad \forall \vec{x} \in \mathbb{R}^m$$

Claim 1: $\vec{0}_n \in im(T)$

Proof of Claim 1: By an earlier theorem, there exists an $n \times m$ matrix A with the property that

$$T(\vec{x}) = A\vec{x} \quad \forall \vec{x} \in \mathbb{R}^m$$

Let \vec{x} be the zero vector in \mathbb{R}^m , $\vec{0}_m$.

Then by the properties of matrix multiplication,

$$A\vec{0}_m = \vec{0}_n$$

for any $n \times m$ matrix A. Therefore, $A\vec{0}_m = T(\vec{0}_m) = \vec{0}_n$, and so by definition $\vec{0}_n$ is in im(T).

Claim 2: im(T) is closed under addition.

Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ be arbitrary elements of im(T). We need to show that $\vec{u} + \vec{v} \in im(T)$.

Claim 2: im(T) is closed under addition.

Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ be arbitrary elements of im(T). We need to show that $\vec{u} + \vec{v} \in im(T)$.

By the definition of im(T), there are vectors $\vec{x}, \vec{y} \in \mathbb{R}^m$ such that

 $T(\vec{x}) = A\vec{x} = \vec{u}$ and $T(\vec{y}) = A\vec{y} = \vec{v}$

Claim 2: im(T) is closed under addition.

Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ be arbitrary elements of im(T). We need to show that $\vec{u} + \vec{v} \in im(T)$.

By the definition of im(T), there are vectors $\vec{x}, \vec{y} \in \mathbb{R}^m$ such that

 $T(\vec{x}) = A\vec{x} = \vec{u}$ and $T(\vec{y}) = A\vec{y} = \vec{v}$

Since \mathbb{R}^m is a subspace of itself, it is closed under addition, and therefore $\vec{x} + \vec{y} \in \mathbb{R}^m$.

Claim 2: im(T) is closed under addition.

Proof of Claim 2: Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ be arbitrary elements of im(T). We need to show that $\vec{u} + \vec{v} \in im(T)$.

By the definition of im(T), there are vectors $\vec{x}, \vec{y} \in \mathbb{R}^m$ such that

 $T(\vec{x}) = A\vec{x} = \vec{u}$ and $T(\vec{y}) = A\vec{y} = \vec{v}$

Since \mathbb{R}^m is a subspace of itself, it is closed under addition, and therefore $\vec{x} + \vec{y} \in \mathbb{R}^m$.

By the properties of linear transformations,

 $T(\vec{x} + \vec{y}) = A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y} = \vec{u} + \vec{v}$

and therefore $\vec{u} + \vec{v} \in im(T)$.

Claim 3: im(T) is closed under scalar multiplication.

Proof of Claim 3: Let $\vec{u} \in \mathbb{R}^n$ be an arbitrary element of im(T) and $k \in \mathbb{R}$ an arbitrary scalar. We need to show that $k\vec{u} \in im(T)$.

Claim 3: im(T) is closed under scalar multiplication.

Proof of Claim 3: Let $\vec{u} \in \mathbb{R}^n$ be an arbitrary element of im(T) and $k \in \mathbb{R}$ an arbitrary scalar. We need to show that $k\vec{u} \in im(T)$.

By the definition of im(T), there is a vector $\vec{x} \in \mathbb{R}^m$ such that

$$T(\vec{x}) = A\vec{x} = \vec{u}$$

Since \mathbb{R}^m is a subspace of itself, it is closed under scalar multiplication, and therefore for any real number $k, k\vec{x} \in \mathbb{R}^m$.

Since \mathbb{R}^m is a subspace of itself, it is closed under scalar multiplication, and therefore for any real number $k, k\vec{x} \in \mathbb{R}^m$.

By the properties of linear transformations,

$$T(k\vec{x}) = A(k\vec{x}) = kA\vec{x} = k\vec{u}$$

and therefore $k\vec{u} \in im(T)$.

Since \mathbb{R}^m is a subspace of itself, it is closed under scalar multiplication, and therefore for any real number $k, k\vec{x} \in \mathbb{R}^m$.

By the properties of linear transformations,

$$T(k\vec{x}) = A(k\vec{x}) = kA\vec{x} = k\vec{u}$$

and therefore $k\vec{u} \in im(T)$.

This completes the proof that im(T) is a subspace.