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im(A) and span
If T : R

m → R
n is a linear transformation with associated

n × m matrix A, and we write the columns of A

A = [~a1 · · ·~am]

as a set of m column vectors,

V = {~a1, . . . ,~am}

then
im(A) = span(V )
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im(A) and span
Proof: Since im(A) and span(V ) are sets, the proof
requires us to show that two sets are the same.

The usual technique for doing this is to prove that each is a
subset of the other.
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The usual technique for doing this is to prove that each is a
subset of the other.

To prove that im(A) ⊆ span(V ), first assume that a vector ~x

belongs to span(V ).
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im(A) and span
Proof: Since im(A) and span(V ) are sets, the proof
requires us to show that two sets are the same.

The usual technique for doing this is to prove that each is a
subset of the other.

To prove that im(A) ⊆ span(V ), first assume that a vector ~x

belongs to span(V ).

If we can show that this implies that it also belongs to
im(A), then we have established that span(V ) ⊆ im(A).
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im(A) and span
First suppose ~x ∈ span(V ).

Then for some scalars c1, . . . , cm,

~x = c1~a1 + · · · + cm~am
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im(A) and span
First suppose ~x ∈ span(V ).

Then for some scalars c1, . . . , cm,

~x = c1~a1 + · · · + cm~am

But this is the same as

~x = [~a1 · · ·~am]
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= A~c

where ~c = (c1, . . . , cm) ∈ R
m, so ~x ∈ im(A).
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im(A) and span
Now suppose ~x ∈ im(A).

Then for some vector ~c ∈ R
m,

~x = A~c
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im(A) and span
Now suppose ~x ∈ im(A).

Then for some vector ~c ∈ R
m,

~x = A~c

But this is the same as

~x = [~a1 · · ·~am]













c1
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cm













= c1~a1 + · · · + cn~am

so x ∈ span ({~a · · ·~am}) = span(V ).
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im(A) and span
By establishing that

im(A) ⊆ span(V ) and span(V ) ⊆ im(A)

we have shown that

im(A) = span(V )
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