# Proof that $i m(A)$ is the Span of the Columns of $A$ 

Gene Quinn

$i m(A)$ and span
If $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation with associated $n \times m$ matrix $A$, and we write the columns of $A$

$$
A=\left[\vec{a}_{1} \cdots \vec{a}_{m}\right]
$$

as a set of $m$ column vectors,

$$
V=\left\{\vec{a}_{1}, \ldots, \vec{a}_{m}\right\}
$$

then

$$
i m(A)=\operatorname{span}(V)
$$

$i m(A)$ and span
Proof: Since $i m(A)$ and $\operatorname{span}(V)$ are sets, the proof requires us to show that two sets are the same.

The usual technique for doing this is to prove that each is a subset of the other.
$i m(A)$ and span
Proof: Since $i m(A)$ and $\operatorname{span}(V)$ are sets, the proof requires us to show that two sets are the same.

The usual technique for doing this is to prove that each is a subset of the other.

To prove that $i m(A) \subseteq \operatorname{span}(V)$, first assume that a vector $\vec{x}$ belongs to $\operatorname{span}(V)$.
$i m(A)$ and span
Proof: Since $i m(A)$ and $\operatorname{span}(V)$ are sets, the proof requires us to show that two sets are the same.

The usual technique for doing this is to prove that each is a subset of the other.

To prove that $i m(A) \subseteq \operatorname{span}(V)$, first assume that a vector $\vec{x}$ belongs to $\operatorname{span}(V)$.

If we can show that this implies that it also belongs to $\operatorname{im}(A)$, then we have established that span $(V) \subseteq \operatorname{im}(A)$.
$i m(A)$ and span
First suppose $\vec{x} \in \operatorname{span}(V)$.
Then for some scalars $c_{1}, \ldots, c_{m}$,

$$
\vec{x}=c_{1} \vec{a}_{1}+\cdots+c_{m} \vec{a}_{m}
$$

$i m(A)$ and span
First suppose $\vec{x} \in \operatorname{span}(V)$.
Then for some scalars $c_{1}, \ldots, c_{m}$,

$$
\vec{x}=c_{1} \vec{a}_{1}+\cdots+c_{m} \vec{a}_{m}
$$

But this is the same as

$$
\vec{x}=\left[\vec{a}_{1} \cdots \vec{a}_{m}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right]=A \vec{c}
$$

where $\vec{c}=\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{R}^{m}$, so $\vec{x} \in \operatorname{im}(A)$.
$i m(A)$ and span
Now suppose $\vec{x} \in \operatorname{im}(A)$.
Then for some vector $\vec{c} \in \mathbb{R}^{m}$,
$\vec{x}=A \vec{c}$
$i m(A)$ and span
Now suppose $\vec{x} \in i m(A)$.
Then for some vector $\vec{c} \in \mathbb{R}^{m}$,

$$
\vec{x}=A \vec{c}
$$

But this is the same as

$$
\vec{x}=\left[\vec{a}_{1} \cdots \vec{a}_{m}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right]=c_{1} \vec{a}_{1}+\cdots+c_{n} \vec{a}_{m}
$$

so $x \in \operatorname{span}\left(\left\{\vec{a} \cdots \vec{a}_{m}\right\}\right)=\operatorname{span}(V)$.
$i m(A)$ and span
By establishing that

$$
i m(A) \subseteq \operatorname{span}(V) \quad \text { and } \quad \operatorname{span}(V) \subseteq i m(A)
$$

we have shown that

$$
i m(A)=\operatorname{span}(V)
$$

