Projections

Gene Quinn

Projections

A projection is a type of linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

that projects a vector \vec{x} onto a line L.

Projections

The key idea is to write \vec{x} as the sum of a vector parallel to $L, \vec{x}^{\|}$and a vector \vec{x}^{\perp} perpendicular to L :

Projections

The first step is to obtain a unit vector \vec{u} in the direction of the line L.

Projections

The first step is to obtain a unit vector \vec{u} in the direction of the line L.

Suppose \vec{l} is a vector parallel to the line L. Then

$$
\vec{u}=\frac{\vec{l}}{\|\vec{l}\|}=\left(\frac{1}{\sqrt{\vec{l} \cdot \vec{l}}}\right) \vec{l}
$$

is a unit vector in the direction of L.

Projections

The first step is to obtain a unit vector \vec{u} in the direction of the line L.

Suppose \vec{l} is a vector parallel to the line L. Then

$$
\vec{u}=\frac{\vec{l}}{\|\vec{l}\|}=\left(\frac{1}{\sqrt{\vec{l} \cdot \vec{l}}}\right) \vec{l}
$$

is a unit vector in the direction of L.
The projection of \vec{x} onto line L is then given by

$$
\operatorname{proj}_{L}(\vec{x})=(\vec{x} \cdot \vec{u}) \vec{u}
$$

Projections

Expanding $(\vec{x} \cdot \vec{u}) \vec{u}$ into its components,

$$
(\vec{x} \cdot \vec{u}) \vec{u}=\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\right)\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Projections

Expanding $(\vec{x} \cdot \vec{u}) \vec{u}$ into its components,

$$
(\vec{x} \cdot \vec{u}) \vec{u}=\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\right)\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Expanding the dot product $\vec{x} \cdot \vec{u}$ into $x_{1} u_{1}+x_{2} v_{2}$, this becomes

$$
\left(x_{1} u_{1}+x_{2} u_{2}\right)\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Projections

Expanding $(\vec{x} \cdot \vec{u}) \vec{u}$ into its components,

$$
(\vec{x} \cdot \vec{u}) \vec{u}=\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\right)\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

Expanding the dot product $\vec{x} \cdot \vec{u}$ into $x_{1} u_{1}+x_{2} v_{2}$, this becomes

$$
\begin{gathered}
\left(x_{1} u_{1}+x_{2} u_{2}\right)\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
=\left[\begin{array}{c}
u_{1}^{2} x_{1}+u_{1} u_{2} x_{2} \\
u_{1} u_{2} x_{1}+u_{2}^{2} x_{2}
\end{array}\right]=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{gathered}
$$

Projections

This becomes

$$
\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right] \vec{x}
$$

Projections

This becomes

$$
\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right] \vec{x}
$$

Now we can write projection onto L for any vector \vec{x} as a linear transformation with the following matrix A :

$$
T \vec{x}=A \vec{x}=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right] \vec{x}
$$

Projections

This becomes

$$
\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right] \vec{x}
$$

Now we can write projection onto L for any vector \vec{x} as a linear transformation with the following matrix A :

$$
T \vec{x}=A \vec{x}=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right] \vec{x}
$$

In the above formula, u_{1} and u_{2} are the components of a unit vector \vec{u} which is parallel to the line L.

Projections

Suppose we want to find the matrix A that projects a vector \vec{x} onto the line $y=x$ (i.e., the line that passes through the origin at a 45 degree angle).

The unit vector \vec{u} along this line is

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Projections

Suppose we want to find the matrix A that projects a vector \vec{x} onto the line $y=x$ (i.e., the line that passes through the origin at a 45 degree angle).

The unit vector \vec{u} along this line is

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Now the matrix A is

$$
A=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

Projections

Example: Find the projection of the vector $\vec{x}=(1,2)$ onto the line L that passes through the origin at a 45 degree angle.

Projections

Example: Find the projection of the vector $\vec{x}=(1,2)$ onto the line L that passes through the origin at a 45 degree angle.
We determined the matrix A for this projection on the previous slide. The projection of $\vec{x}=(1,2)$ is

$$
T \vec{x}=A \vec{x}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Projections

Example: Find the projection of the vector $\vec{x}=(1,2)$ onto the line L that passes through the origin at a 45 degree angle.
We determined the matrix A for this projection on the previous slide. The projection of $\vec{x}=(1,2)$ is

$$
T \vec{x}=A \vec{x}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The projection $A \vec{x}=\vec{x} \|$ is

$$
\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+\frac{2}{2} \\
\frac{1}{2}+\frac{2}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
\frac{3}{2}
\end{array}\right]=\vec{x}^{\|}
$$

Projections

The projection is

$$
T \vec{x}=A \vec{x}=\left[\begin{array}{c}
\frac{3}{2} \\
\frac{3}{2}
\end{array}\right]=\vec{x}^{\|}
$$

Projections

Example: Find the matrix A with the property that, for any vector \vec{x},

$$
T \vec{x}=A \vec{x}
$$

is the projection of \vec{x} onto the line through the origin that makes an angle of $\pi / 6$ or 30 degrees with the horizontal axis.

Projections

Example: Find the matrix A with the property that, for any vector \vec{x},

$$
T \vec{x}=A \vec{x}
$$

is the projection of \vec{x} onto the line through the origin that makes an angle of $\pi / 6$ or 30 degrees with the horizontal axis.
If we have an angle θ with the horizontal axis, the unit vector in that direction is

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

Projections

In terms of θ, the projection matrix A is:

$$
A=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin ^{2} \theta
\end{array}\right]
$$

Projections

In terms of θ, the projection matrix A is:

$$
A=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin ^{2} \theta
\end{array}\right]
$$

If $\theta=\pi / 6$, then

$$
\cos \theta=\frac{\sqrt{3}}{2} \quad \text { and } \quad \sin \theta=\frac{1}{2}
$$

Projections

The matrix A of the projection onto this line is then

$$
A=\left[\begin{array}{rr}
\frac{3}{4} & \frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & \frac{1}{4}
\end{array}\right]
$$

Projections

The matrix A of the projection onto this line is then

$$
A=\left[\begin{array}{rr}
\frac{3}{4} & \frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & \frac{1}{4}
\end{array}\right]
$$

Now for any matrix \vec{w}, the projection of \vec{w} onto the line L is

$$
\begin{aligned}
\operatorname{proj}_{L}(\vec{w}) & =A \vec{w}=\left[\begin{array}{rr}
\frac{3}{4} & \frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & \frac{1}{4}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{3}{4} w_{1}+\frac{\sqrt{3}}{4} w_{2} \\
\frac{\sqrt{3}}{4} w_{1}+\frac{1}{4} w_{2}
\end{array}\right]
\end{aligned}
$$

(Remember, $\operatorname{proj}_{L}(\vec{w})$ is a vector)

Projections

Example: Find the projection of the vector $\vec{x}=(1,1)$ onto the line L that is parallel to the vector $\vec{v}=(3,1)$.

Projections

Example: Find the projection of the vector $\vec{x}=(1,1)$ onto the line L that is parallel to the vector $\vec{v}=(3,1)$.

Projections

Example: Find the projection of the vector $\vec{x}=(1,1)$ onto the line L that is parallel to the vector $\vec{v}=(3,1)$.
The procedure for finding the projection of a vector \vec{x} onto a line L is:

- Find a unit vector \vec{u} parallel to the line
- Compute the projection as: $\operatorname{proj}_{L}(\vec{x})=(\vec{x} \cdot \vec{u}) \vec{u}$

Projections

Example: Find the projection of the vector $\vec{x}=(1,1)$ onto the line L that is parallel to the vector $\vec{v}=(3,1)$.
The procedure for finding the projection of a vector \vec{x} onto a line L is:

- Find a unit vector \vec{u} parallel to the line
- Compute the projection as: $\operatorname{proj}_{L}(\vec{x})=(\vec{x} \cdot \vec{u}) \vec{u}$

To convert \vec{v} to a unit vector, we multiply it by the reciprocal of its length (which is a scalar). The length of \vec{v} is:

$$
\begin{gathered}
\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{1^{2}+3^{2}}=\sqrt{10} \\
\vec{u}=\frac{1}{\|\vec{v}\|} \vec{v}=\frac{1}{\sqrt{10}} \vec{v}
\end{gathered}
$$

Projections

or

$$
\vec{u}=\frac{1}{\|\vec{v}\|} \vec{v}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

SO

$$
\vec{u}=\left[\begin{array}{c}
\frac{1}{\sqrt{10}} \\
\frac{3}{\sqrt{10}}
\end{array}\right]
$$

Projections

or

$$
\vec{u}=\frac{1}{\|\vec{v}\|} \vec{v}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

SO

$$
\vec{u}=\left[\begin{array}{c}
\frac{1}{\sqrt{10}} \\
\frac{3}{\sqrt{10}}
\end{array}\right]
$$

Now

$$
\operatorname{proj}_{L}(\vec{w})=(\vec{x} \cdot \vec{u}) \vec{u}=\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{1}{\sqrt{10}} \\
\frac{3}{\sqrt{10}}
\end{array}\right]\right)\left[\begin{array}{c}
\frac{1}{\sqrt{10}} \\
\frac{3}{\sqrt{10}}
\end{array}\right]
$$

Projections

Expanding the dot product gives

$$
\operatorname{proj}_{L}(\vec{w})=(\vec{x} \cdot \vec{u}) \vec{u}=\left(1 \cdot \frac{1}{\sqrt{10}}+1 \cdot \frac{3}{\sqrt{10}}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{10}} \\
\frac{3}{\sqrt{10}}
\end{array}\right]
$$

Projections

Expanding the dot product gives

$$
\begin{gathered}
\operatorname{proj}_{L}(\vec{w})=(\vec{x} \cdot \vec{u}) \vec{u}=\left(1 \cdot \frac{1}{\sqrt{10}}+1 \cdot \frac{3}{\sqrt{10}}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{10}} \\
\frac{3}{\sqrt{10}}
\end{array}\right] \\
\operatorname{proj}_{L}(\vec{w})=(\vec{x} \cdot \vec{u}) \vec{u}=\left(\frac{4}{\sqrt{10}}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{10}} \\
\frac{3}{\sqrt{10}}
\end{array}\right]
\end{gathered}
$$

Projections

Expanding the dot product gives

$$
\begin{gathered}
\operatorname{proj}_{L}(\vec{w})=(\vec{x} \cdot \vec{u}) \vec{u}=\left(1 \cdot \frac{1}{\sqrt{10}}+1 \cdot \frac{3}{\sqrt{10}}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{10}} \\
\frac{3}{\sqrt{10}}
\end{array}\right] \\
\operatorname{proj}_{L}(\vec{w})=(\vec{x} \cdot \vec{u}) \vec{u}=\left(\frac{4}{\sqrt{10}}\right)\left[\begin{array}{c}
\frac{1}{\sqrt{10}} \\
\frac{3}{\sqrt{10}}
\end{array}\right]
\end{gathered}
$$

Finally,

$$
\operatorname{proj}_{L}(\vec{w})=(\vec{x} \cdot \vec{u}) \vec{u}=\left[\begin{array}{c}
\frac{4}{10} \\
\frac{12}{10}
\end{array}\right]=\left[\begin{array}{c}
0.4 \\
1.2
\end{array}\right]=\vec{x}^{\|}
$$

Projections

The projection is

$$
\operatorname{proj}_{L}(\vec{w})=(\vec{x} \cdot \vec{u}) \vec{u}=\left[\begin{array}{c}
\frac{4}{10} \\
\frac{12}{10}
\end{array}\right]=\left[\begin{array}{c}
0.4 \\
1.2
\end{array}\right]=\vec{x}^{\|}
$$

