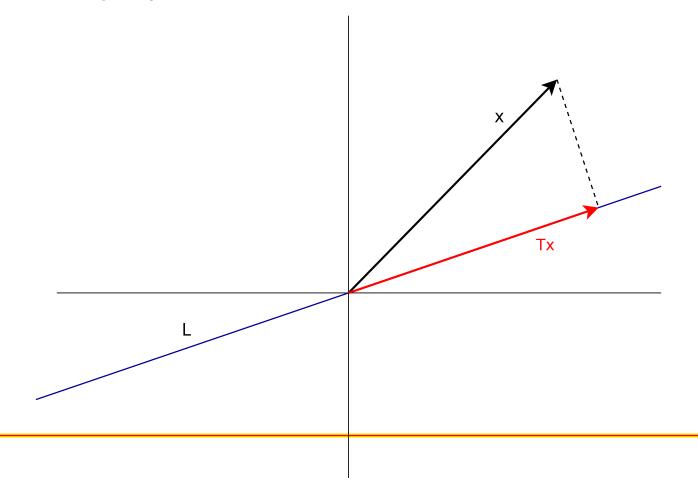
Gene Quinn

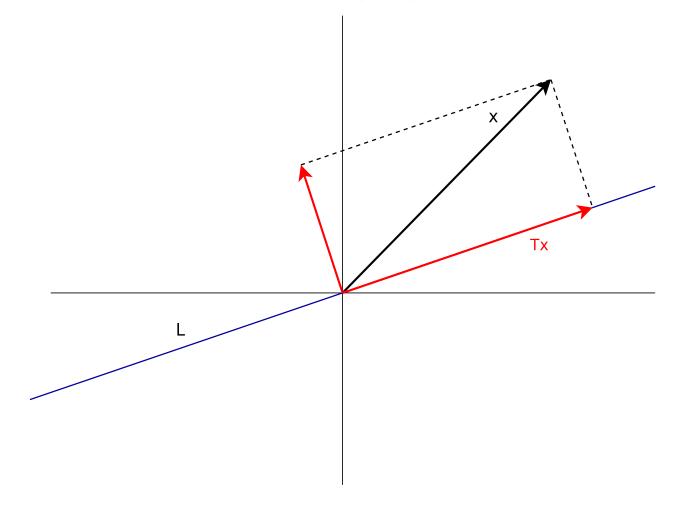
A projection is a type of linear transformation

 $T: \mathbb{R}^n \to \mathbb{R}^n$

that *projects* a vector \vec{x} onto a line *L*.



The key idea is to write \vec{x} as the sum of a vector parallel to L, \vec{x}^{\parallel} and a vector \vec{x}^{\perp} perpendicular to L:



The first step is to obtain a unit vector \vec{u} in the direction of the line *L*.

The first step is to obtain a unit vector \vec{u} in the direction of the line *L*.

Suppose \vec{l} is a vector parallel to the line L. Then

$$\vec{u} = \frac{\vec{l}}{\|\vec{l}\|} = \left(\frac{1}{\sqrt{\vec{l} \cdot \vec{l}}}\right) \vec{l}$$

is a unit vector in the direction of L.

The first step is to obtain a unit vector \vec{u} in the direction of the line *L*.

Suppose \vec{l} is a vector parallel to the line L. Then

$$\vec{u} = \frac{\vec{l}}{\|\vec{l}\|} = \left(\frac{1}{\sqrt{\vec{l} \cdot \vec{l}}}\right) \vec{l}$$

is a unit vector in the direction of L.

The projection of \vec{x} onto line L is then given by

$$\mathsf{proj}_L(\vec{x}) = (\vec{x} \cdot \vec{u}) \, \vec{u}$$

Expanding $(\vec{x} \cdot \vec{u})\vec{u}$ into its components,

$$(\vec{x} \cdot \vec{u}) \, \vec{u} = \left(\left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \cdot \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right] \right) \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right] \right)$$

Expanding $(\vec{x} \cdot \vec{u})\vec{u}$ into its components,

$$(\vec{x} \cdot \vec{u}) \, \vec{u} = \left(\left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \cdot \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right] \right) \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right] \right)$$

Expanding the dot product $\vec{x} \cdot \vec{u}$ into $x_1u_1 + x_2v_2$, this becomes

$$(x_1u_1 + x_2u_2) \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right]$$

Expanding $(\vec{x} \cdot \vec{u})\vec{u}$ into its components,

$$(\vec{x} \cdot \vec{u}) \, \vec{u} = \left(\left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \cdot \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right] \right) \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right] \right)$$

Expanding the dot product $\vec{x} \cdot \vec{u}$ into $x_1u_1 + x_2v_2$, this becomes

$$(x_1u_1 + x_2u_2) \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$= \begin{bmatrix} u_1^2 x_1 + u_1 u_2 x_2 \\ u_1 u_2 x_1 + u_2^2 x_2 \end{bmatrix} = \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

This becomes

$$\begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix} \vec{x}$$

This becomes

$$\begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix} \vec{x}$$

Now we can write projection onto *L* for any vector \vec{x} as a linear transformation with the following matrix *A*:

$$T\vec{x} = A\vec{x} = \begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix} \vec{x}$$

This becomes

$$\begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix} \vec{x}$$

Now we can write projection onto *L* for any vector \vec{x} as a linear transformation with the following matrix *A*:

$$T\vec{x} = A\vec{x} = \begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix} \vec{x}$$

In the above formula, u_1 and u_2 are the components of a unit vector \vec{u} which is parallel to the line L.

Suppose we want to find the matrix A that projects a vector \vec{x} onto the line y = x (i.e., the line that passes through the origin at a 45 degree angle).

The unit vector \vec{u} along this line is

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

Suppose we want to find the matrix A that projects a vector \vec{x} onto the line y = x (i.e., the line that passes through the origin at a 45 degree angle).

The unit vector \vec{u} along this line is

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

Now the matrix A is

$$A = \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Example: Find the projection of the vector $\vec{x} = (1, 2)$ onto the line *L* that passes through the origin at a 45 degree angle.

Example: Find the projection of the vector $\vec{x} = (1, 2)$ onto the line *L* that passes through the origin at a 45 degree angle.

We determined the matrix A for this projection on the previous slide. The projection of $\vec{x} = (1, 2)$ is

$$T\vec{x} = A\vec{x} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

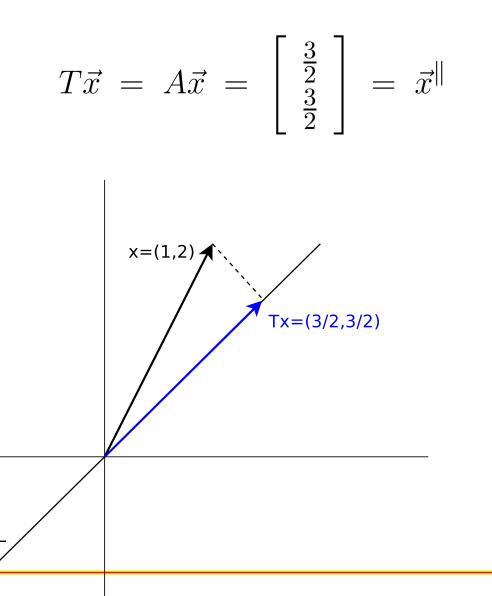
Example: Find the projection of the vector $\vec{x} = (1, 2)$ onto the line *L* that passes through the origin at a 45 degree angle.

We determined the matrix A for this projection on the previous slide. The projection of $\vec{x} = (1, 2)$ is

$$T\vec{x} = A\vec{x} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

The projection $A\vec{x} = \vec{x}^{\parallel}$ is
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} + \frac{2}{2} \\ \frac{1}{2} + \frac{2}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix} = \vec{x}^{\parallel}$$

The projection is



Example: Find the matrix A with the property that, for any vector \vec{x} ,

$$T\vec{x} = A\vec{x}$$

is the projection of \vec{x} onto the line through the origin that makes an angle of $\pi/6$ or 30 degrees with the horizontal axis.

Example: Find the matrix A with the property that, for any vector \vec{x} ,

$$T\vec{x} = A\vec{x}$$

is the projection of \vec{x} onto the line through the origin that makes an angle of $\pi/6$ or 30 degrees with the horizontal axis.

If we have an angle θ with the horizontal axis, the unit vector in that direction is

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

In terms of θ , the projection matrix A is:

$$A = \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix} = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$

In terms of θ , the projection matrix A is:

$$A = \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix} = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$

If $\theta = \pi/6$, then

$$\cos\theta = \frac{\sqrt{3}}{2}$$
 and $\sin\theta = \frac{1}{2}$

The matrix A of the projection onto this line is then

$$A = \begin{bmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{bmatrix}$$

The matrix A of the projection onto this line is then

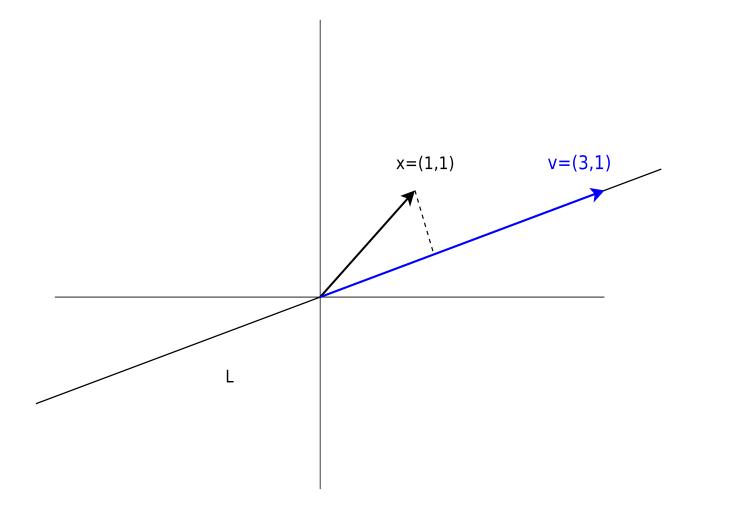
$$A = \begin{bmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{bmatrix}$$

Now for any matrix \vec{w} , the projection of \vec{w} onto the line L is

$$\operatorname{proj}_{L}(\vec{w}) = A\vec{w} = \begin{bmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{3}{4}w_{1} + \frac{\sqrt{3}}{4}w_{2} \\ \frac{\sqrt{3}}{4}w_{1} + \frac{1}{4}w_{2} \end{bmatrix}$$

(Remember, $proj_L(\vec{w})$ is a *vector*)

Example: Find the projection of the vector $\vec{x} = (1, 1)$ onto the line *L* that is parallel to the vector $\vec{v} = (3, 1)$.



Example: Find the projection of the vector $\vec{x} = (1, 1)$ onto the line *L* that is parallel to the vector $\vec{v} = (3, 1)$.

Example: Find the projection of the vector $\vec{x} = (1, 1)$ onto the line *L* that is parallel to the vector $\vec{v} = (3, 1)$.

The procedure for finding the projection of a vector \vec{x} onto a line L is:

- Find a unit vector \vec{u} parallel to the line
- Compute the projection as: $proj_L(\vec{x}) = (\vec{x} \cdot \vec{u})\vec{u}$

Example: Find the projection of the vector $\vec{x} = (1, 1)$ onto the line *L* that is parallel to the vector $\vec{v} = (3, 1)$.

The procedure for finding the projection of a vector \vec{x} onto a line L is:

- Find a unit vector \vec{u} parallel to the line
- Compute the projection as: $proj_L(\vec{x}) = (\vec{x} \cdot \vec{u})\vec{u}$

To convert \vec{v} to a unit vector, we multiply it by the reciprocal of its length (which is a scalar). The length of \vec{v} is:

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{1^2 + 3^2} = \sqrt{10}$$
$$\vec{u} = \frac{1}{\|\vec{v}\|} \vec{v} = \frac{1}{\sqrt{10}} \vec{v}$$

or

SO

 $\vec{u} = \frac{1}{\|\vec{v}\|}\vec{v} = \frac{1}{\sqrt{10}} \begin{bmatrix} 1\\ 3 \end{bmatrix}$ $\vec{u} = \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{bmatrix}$

or

SO

 $\vec{u} = \frac{1}{\|\vec{v}\|}\vec{v} = \frac{1}{\sqrt{10}}\begin{bmatrix}1\\3\end{bmatrix}$

$$\vec{u} = \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{bmatrix}$$

Now

$$\operatorname{proj}_{L}(\vec{w}) = (\vec{x} \cdot \vec{u})\vec{u} = \left(\begin{bmatrix} 1\\1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{\sqrt{10}}\\\frac{3}{\sqrt{10}} \end{bmatrix} \right) \begin{bmatrix} \frac{1}{\sqrt{10}}\\\frac{3}{\sqrt{10}} \end{bmatrix}$$

Expanding the dot product gives

$$\mathsf{proj}_{L}(\vec{w}) = (\vec{x} \cdot \vec{u})\vec{u} = \left(1 \cdot \frac{1}{\sqrt{10}} + 1 \cdot \frac{3}{\sqrt{10}}\right) \left[\begin{array}{c}\frac{1}{\sqrt{10}}\\\frac{3}{\sqrt{10}}\end{array}\right]$$

Expanding the dot product gives

$$\operatorname{proj}_{L}(\vec{w}) = (\vec{x} \cdot \vec{u})\vec{u} = \left(1 \cdot \frac{1}{\sqrt{10}} + 1 \cdot \frac{3}{\sqrt{10}}\right) \left[\begin{array}{c}\frac{1}{\sqrt{10}}\\\frac{3}{\sqrt{10}}\end{array}\right]$$

$$\operatorname{proj}_{L}(\vec{w}) = (\vec{x} \cdot \vec{u})\vec{u} = \left(\frac{4}{\sqrt{10}}\right) \left[\begin{array}{c} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{array}\right]$$

Expanding the dot product gives

$$\operatorname{proj}_{L}(\vec{w}) = (\vec{x} \cdot \vec{u})\vec{u} = \left(1 \cdot \frac{1}{\sqrt{10}} + 1 \cdot \frac{3}{\sqrt{10}}\right) \left[\begin{array}{c} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{array}\right]$$

$$\operatorname{proj}_{L}(\vec{w}) = (\vec{x} \cdot \vec{u})\vec{u} = \left(\frac{4}{\sqrt{10}}\right) \left[\begin{array}{c} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{array}\right]$$

Finally,

$$\operatorname{proj}_{L}(\vec{w}) = (\vec{x} \cdot \vec{u})\vec{u} = \begin{bmatrix} \frac{4}{10} \\ \frac{12}{10} \end{bmatrix} = \begin{bmatrix} 0.4 \\ 1.2 \end{bmatrix} = \vec{x}^{\parallel}$$

The projection is

$$\operatorname{proj}_{L}(\vec{w}) = (\vec{x} \cdot \vec{u})\vec{u} = \begin{bmatrix} \frac{4}{10} \\ \frac{12}{10} \end{bmatrix} = \begin{bmatrix} 0.4 \\ 1.2 \end{bmatrix} = \vec{x}^{\parallel}$$

