Matrix Algebra

Gene Quinn

Introduction

The term matrix algebra refers to the algebraic properties of matrices and vectors:

- how the addition operation is defined
- how multiplication by scalars is defined
- which matrices or vectors can be added
- how the product of a vector and a matrix is defined

Matrices and Vectors

So far the following definitions have been presented:

- a matrix is a rectangular array of numbers
- a column vector is a matrix with a single column
- a row vector is a matrix with one row

Matrices and Vectors

- a matrix is a rectangular array of numbers
- a column vector is a matrix with a single column
- a row vector is a matrix with one row

Vectors (either row or column) can be thought of as elements of \mathbb{R}^{n}, the set of ordered n-tuples of real numbers.

Examples

According to our definition, the following are matrices:

$$
\left[\begin{array}{rrr}
1 & -4 & 0 \tag{1}\\
2 & 2 & 7 \\
1 & 0 & -11
\end{array}\right] \quad\left[\begin{array}{rrrr}
1 & 1 & 1 & 6 \\
3 & 2 & -2 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -3 \\
2 & 3 \\
1 & 0 \\
0 & 3
\end{array}\right]
$$

Examples

According to our definition, the following are matrices:

$$
\left[\begin{array}{rrr}
1 & -4 & 0 \tag{1}\\
2 & 2 & 7 \\
1 & 0 & -11
\end{array}\right] \quad\left[\begin{array}{rrrr}
1 & 1 & 1 & 6 \\
3 & 2 & -2 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & -3 \\
2 & 3 \\
1 & 0 \\
0 & 3
\end{array}\right]
$$

The following are not matrices:

$$
\left[\begin{array}{rrr}
& -4 & 0 \\
2 & 2 & 7 \\
1 & 0 & -11
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
3 & 2 & -2 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & \text { Ted } \\
2 & 3 \\
1 & 0 \\
0 & 3
\end{array}\right]
$$

Examples

According to our definition, the following are vectors (a vector is also a matrix):

$$
\left[\begin{array}{lll}
1 & -4 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right] \quad[1]
$$

Examples

According to our definition, the following are vectors (a vector is also a matrix):

$$
\left[\begin{array}{lll}
1 & -4 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right] \quad[1]
$$

The following are neither vectors nor matrices:

$$
\left[\begin{array}{lll}
\& & -4 & 0
\end{array}\right]\left[\begin{array}{lll}
\text { red blue magenta cyan }
\end{array}\right]\left[\begin{array}{c}
- \\
- \\
0
\end{array}\right]
$$

Examples

If the $a_{i j}$ symbols represent numbers, the following entity is a matrix:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

The $a_{i j}$ are referred to as entries

Sums of Matrices

Addition of two matrices with the same numbers of rows and columns is defined entry by entry:

$$
\begin{gathered}
A+B=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]+\left[\begin{array}{lll}
b_{11} & b_{12} & c_{13} \\
b_{21} & b_{22} & c_{23} \\
b_{31} & b_{32} & c_{33}
\end{array}\right] \\
=\left[\begin{array}{lll}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\
a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33}
\end{array}\right]
\end{gathered}
$$

The matrix sum has the same number of rows and columns as each of the matrix addends.

Scalar Multiplication

Multiplication of a matrix by a scalar is also defined entry by entry:

$$
k A=k \cdot\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
k \cdot a_{11} & k \cdot a_{12} & k \cdot a_{13} \\
k \cdot a_{21} & k \cdot a_{22} & k \cdot a_{23} \\
k \cdot a_{31} & k \cdot a_{32} & k \cdot a_{33}
\end{array}\right]
$$

The resulting matrix has the same number of rows and columns as the original matrix.

Linear Combinations

A vector $\vec{b} \in \mathbb{R}^{n}$ is said to be a linear combination of the vectors

$$
\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k} \in \mathbb{R}^{n}
$$

if we can find k scalars $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
\vec{b}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{k} \vec{v}_{k}
$$

Linear Combinations

A vector $\vec{b} \in \mathbb{R}^{n}$ is said to be a linear combination of the vectors

$$
\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k} \in \mathbb{R}^{n}
$$

if we can find k scalars $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
\vec{b}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{k} \vec{v}_{k}
$$

A row or column vector with n components is considered to be equivalent to an ordered n-tuple ($x_{1}, x_{2}, \ldots, x_{n}$) of real numbers. The set of all ordered n-tuples of real numbers is denoted by \mathbb{R}^{n}.
Any element of \mathbb{R}^{n} can be thought of as either a row vector or a column vector witn n components.

Matrix Columns as Vectors

It is very often useful to think of the columns of a matrix as column vectors:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right]
$$

where

$$
\vec{v}_{1}=\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{13}
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
a_{21} \\
a_{22} \\
a_{23}
\end{array}\right] \quad \text { and } \quad \vec{v}_{3}=\left[\begin{array}{c}
a_{31} \\
a_{32} \\
a_{33}
\end{array}\right]
$$

Matrix Rows as Vectors

Likewise is very often useful to think of the rows of a matrix as row vectors:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{l}
\vec{v}_{1} \\
\vec{v}_{2} \\
\vec{v}_{3}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \vec{v}_{1}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right] \\
& \vec{v}_{2}=\left[\begin{array}{lll}
a_{21} & a_{22} & a_{23}
\end{array}\right] \\
& \vec{v}_{3}=\left[\begin{array}{lll}
a_{31} & a_{32} & a_{33}
\end{array}\right]
\end{aligned}
$$

The Product of a Matrix and a Vector

If A is an $n \times m$ matrix and a column vector \vec{x} has m components, we may define the product $A \vec{x}$ as

$$
A \vec{x}=\left[\vec{v}_{1} \vec{v}_{2} \cdots \vec{v}_{m}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{m} \vec{v}_{m}
$$

The Product of a Matrix and a Vector

If A is an $n \times m$ matrix and a column vector \vec{x} has m components, we may define the product $A \vec{x}$ as

$$
A \vec{x}=\left[\vec{v}_{1} \vec{v}_{2} \cdots \vec{v}_{m}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{m} \vec{v}_{m}
$$

The product

$$
A \vec{x}
$$

is a vector in \mathbb{R}^{n} because it is a linear combination of the vectors comprising the columns of A, which each have n components.

The Product of a Matrix and a Vector

$$
A \vec{x}=\left[\vec{v}_{1} \vec{v}_{2} \cdots \vec{v}_{m}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{m} \vec{v}_{m}
$$

On the right side of the above equation, the $x_{i} \vec{v}_{i}$ entries represent the scalar product of x_{i}, the $i^{\text {th }}$ element of \vec{x}, with the column vector \vec{v}_{i}.

The Product of a Matrix and a Vector

$$
A \vec{x}=\left[\vec{v}_{1} \vec{v}_{2} \cdots \vec{v}_{m}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{m} \vec{v}_{m}
$$

On the right side of the above equation, the $x_{i} \vec{v}_{i}$ entries represent the scalar product of x_{i}, the $i^{\text {th }}$ element of \vec{x}, with the column vector \vec{v}_{i}.
The result of these m scalar multiplications is a set of m vectors $\overrightarrow{v_{i}} \in \mathbb{R}^{n}, i=1,2, \ldots, m$.

The Product of a Matrix and a Vector

$$
A \vec{x}=\left[\vec{v}_{1} \vec{v}_{2} \cdots \vec{v}_{m}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{m} \vec{v}_{m}
$$

On the right side of the above equation, the $x_{i} \vec{v}_{i}$ entries represent the scalar product of x_{i}, the $i^{\text {th }}$ element of \vec{x}, with the column vector \vec{v}_{i}.
The result of these m scalar multiplications is a set of m vectors $\overrightarrow{v_{i}} \in \mathbb{R}^{n}, i=1,2, \ldots, m$.
The final result $A \vec{x}$ is the sum of these m vectors in \mathbb{R}^{n}, and is an element of \mathbb{R}^{n}.

The Product of a Matrix and a Vector

Alternatively, we can view the $n \times m$ matrix A as n row vectors, each with m components.
In this case the product $A \vec{x}$ becomes

$$
A \vec{x}=\left[\begin{array}{r}
\vec{w}_{1} \\
\vec{w}_{2} \\
\vdots \\
\vec{w}_{n}
\end{array}\right] \vec{x}=\left[\begin{array}{r}
\vec{w}_{1} \cdot \vec{x} \\
\vec{w}_{2} \cdot \vec{x} \\
\vdots \\
\vec{w}_{n} \cdot \vec{x}
\end{array}\right]
$$

The Product of a Matrix and a Vector

Alternatively, we can view the $n \times m$ matrix A as n row vectors, each with m components.
In this case the product $A \vec{x}$ becomes

$$
A \vec{x}=\left[\begin{array}{r}
\vec{w}_{1} \\
\vec{w}_{2} \\
\vdots \\
\vec{w}_{n}
\end{array}\right] \vec{x}=\left[\begin{array}{r}
\vec{w}_{1} \cdot \vec{x} \\
\vec{w}_{2} \cdot \vec{x} \\
\vdots \\
\vec{w}_{n} \cdot \vec{x}
\end{array}\right]
$$

The product

$$
A \vec{x}
$$

is a again vector in \mathbb{R}^{n}.

The Product of a Matrix and a Vector

$$
A \vec{x}=\left[\begin{array}{r}
\vec{w}_{1} \\
\vec{w}_{2} \\
\vdots \\
\vec{w}_{n}
\end{array}\right] \vec{x}=\left[\begin{array}{c}
\vec{w}_{1} \cdot \vec{x} \\
\vec{w}_{2} \cdot \vec{x} \\
\vdots \\
\vec{w}_{n} \cdot \vec{x}
\end{array}\right]
$$

This time the $\vec{w}_{i} \cdot \vec{x}_{i}$ entries on right side of the above equation are dot products of two vectors, \vec{w}_{i} and \vec{x}, which each have m components. There are n such products, one for each row of A.

The Product of a Matrix and a Vector

The algebraic rules that the product $A \vec{x}$ obeys are as follows:

Suppose A is an arbitrary $n \times m$ matrix, \vec{x} and \vec{y} are arbitrary vectors in \mathbb{R}^{m}, and k is an arbitrary scalar. The following two equations hold:

$$
\begin{aligned}
A(\vec{x}+\vec{y}) & =A \vec{x}+A \vec{y} \\
A(k \vec{x}) & =k(A \vec{x})
\end{aligned}
$$

Matrix Form of a Linear System
We can now write any system of linear equations in matrix notation.

Suppose

$$
[A \mid \vec{b}]
$$

is the augmented matrix of a system of linear equations.
In matrix form, the system of linear equations is

$$
A \vec{x}=\vec{b}
$$

Matrix Form of a Linear System

Example: Suppose the matrix A and vector \vec{b} given by

$$
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
2 & 4 & 2
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{l}
4 \\
8
\end{array}\right]
$$

correspond to the augmented matrix $[A \mid \vec{b}]$ of a system of linear equations.

Matrix Form of a Linear System

$$
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
2 & 4 & 2
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{l}
4 \\
8
\end{array}\right]
$$

Let \vec{x} be the column vector

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

where x_{1}, x_{2}, and x_{3} represent the variables in the linear system.

Matrix Form of a Linear System

The matrix form of the linear system is:

$$
A \vec{x}=\vec{b}
$$

which in this example translates to

$$
\left[\begin{array}{lll}
1 & 0 & 3 \\
2 & 4 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
8
\end{array}\right]
$$

Matrix Form of a Linear System

$$
\left[\begin{array}{lll}
1 & 0 & 3 \\
2 & 4 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
8
\end{array}\right]
$$

Expanding the left hand side, $A \vec{x}$, using the rules we defined for this type of product gives:

$$
\left[\begin{array}{l}
1 x_{1}+0 x_{2}+3 x_{3} \\
2 x_{1}+4 x_{2}+2 x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
8
\end{array}\right]
$$

