Linear Transformations

Gene Quinn

Functions

First a review of the concept of a function is in order.
A formal definition of a function usually involves three entities:

- A set X called the domain
- A set Y which is sometimes called the codomain
- A rule of assignment that assigns a unique element of the codomain Y to every element of the domain X.

Functions

The bulk of one's early experience is usually with functions whose domain X and codomain Y are the real numbers, and the rule of assignment is a formula, say

$$
y=x^{2}+2
$$

Functions

In the study of linear algebra, we will be dealing with functions whose domain and codomain are sets of vectors.

We identify a vector \vec{x} having n components with an ordered n-tuple of scalars (real numbers, in this course):

$$
\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

corresponds to the ordered n -tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

Linear Transformations

We will consider the class of functions T for which:

- the domain is the set of m-tuples of real numbers \mathbb{R}^{m}
- the codomain is the set of n-tuples of real numbers, \mathbb{R}^{n}

In mathematics, this situation is denoted by:

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

Linear Transformations

Definition: A linear transformation is a function T that maps \mathbb{R}^{m} into \mathbb{R}^{n},

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

in such a way that there exists an $n \times m$ matrix A with the property that

$$
T(\vec{x})=A \vec{x}
$$

for every $\vec{x} \in \mathbb{R}^{m}$.

Linear Transformations

The following properties characterize linear transformations:
A transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear if and only if

$$
\begin{array}{ll}
T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v}) & \text { for all } \vec{u}, \vec{v} \in \mathbb{R}^{m} \\
T(k \vec{v})=k T(\vec{v}) & \text { for all } \vec{v} \in \mathbb{R}^{m} \text { and all scalars } k
\end{array}
$$

The Matrix of a Linear Transformation

We have seen that every linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is associated with an $n \times m$ matrix A with the property that

$$
T(\vec{x})=A \vec{x} \quad \text { for every } \vec{x} \in \mathbb{R}^{m}
$$

The Matrix of a Linear Transformation

We have seen that every linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is associated with an $n \times m$ matrix A with the property that

$$
T(\vec{x})=A \vec{x} \quad \text { for every } \vec{x} \in \mathbb{R}^{m}
$$

As it turns out there is a relationship between the columns of the matrix A and the image under T of vectors of the form

$$
\vec{e}_{i}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]
$$

The Matrix of a Linear Transformation

$$
\vec{e}_{i}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]
$$

The vector \vec{e}_{i} has every component zero except for the $i^{\text {th }}$, which is 1 .

The Matrix of a Linear Transformation

The $n \times n$ matrix A associated with the linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is:

$$
A=\left[\begin{array}{llll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \cdots & T\left(\vec{e}_{m}\right)
\end{array}\right]
$$

The Matrix of a Linear Transformation

The $n \times n$ matrix A associated with the linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is:

$$
A=\left[\begin{array}{llll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \cdots & T\left(\vec{e}_{m}\right)
\end{array}\right]
$$

In other words,

- the first column of A is the vector in \mathbb{R}^{n} that T maps \vec{e}_{1} into
- the second column of A is the vector in \mathbb{R}^{n} that T maps \vec{e}_{2} into
- the third column of A is the vector in \mathbb{R}^{n} that T maps \vec{e}_{3} into
- the $k^{\text {th }}$ column of A is the vector in \mathbb{R}^{n} that T maps \vec{e}_{k} into

The Matrix of a Linear Transformation

The vectors

$$
\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{m} \in \mathbb{R}^{m}
$$

are sometimes called the standard vectors in \mathbb{R}^{m}.

The Matrix of a Linear Transformation

The vectors

$$
\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{m} \in \mathbb{R}^{m}
$$

are sometimes called the standard vectors in \mathbb{R}^{m}.
In \mathbb{R}^{3}, the standard vectors \vec{e}_{1}, \vec{e}_{2}, and \vec{e}_{3} are usually denoted by $\vec{i}, \vec{j}, \vec{k}$.

