Inverse of a Linear Transformation

Gene Quinn

Invertible Functions

In general, an arbitrary function $T: X \rightarrow Y$ that maps a set X into Y is invertible if, for any $y \in Y$, there is one and only one $x \in X$ that satisfies the equation

$$
y=T(x)
$$

Invertible Functions

In general, an arbitrary function $T: X \rightarrow Y$ that maps a set X into Y is invertible if, for any $y \in Y$, there is one and only one $x \in X$ that satisfies the equation

$$
y=T(x)
$$

When this is true, the inverse function $T^{-1}: Y \rightarrow X$ is the function with the property that

$$
T^{-1}(y)=x
$$

Invertible Functions

In general, an arbitrary function $T: X \rightarrow Y$ that maps a set X into Y is invertible if, for any $y \in Y$, there is one and only one $x \in X$ that satisfies the equation

$$
y=T(x)
$$

When this is true, the inverse function $T^{-1}: Y \rightarrow X$ is the function with the property that

$$
T^{-1}(y)=x
$$

T and T^{-1} have the following properties:

$$
T^{-1}(T(x))=x \quad \forall x \in X \quad \text { and } \quad T\left(T^{-1}(y)\right)=y \quad \forall y \in Y
$$

Invertible Linear Transformations

A linear transformation

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad \text { defined by } \quad T(\vec{x})=A \vec{x}=\vec{y}
$$

for some $n \times m$ matrix A is invertible if and only if the following two conditions are satisfied:

Invertible Linear Transformations

A linear transformation

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad \text { defined by } \quad T(\vec{x})=A \vec{x}=\vec{y}
$$

for some $n \times m$ matrix A is invertible if and only if the following two conditions are satisfied:

1) $n=m$, that is, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Invertible Linear Transformations

A linear transformation

$$
T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad \text { defined by } \quad T(\vec{x})=A \vec{x}=\vec{y}
$$

for some $n \times m$ matrix A is invertible if and only if the following two conditions are satisfied:

1) $n=m$, that is, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
2) The reduced row-echelon form of A is an identity matrix:

$$
\operatorname{rref}(A) ;=I_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Invertible Matrices

When a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible, the matrix A associated with T

$$
T(\vec{x})=A \vec{x}=\vec{y}
$$

is said to be invertible.

Invertible Matrices

When a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible, the matrix A associated with T

$$
T(\vec{x})=A \vec{x}=\vec{y}
$$

is said to be invertible.

The matrix associated with the inverse of T,

$$
T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is denoted by A^{-1} :

$$
T^{-1}(\vec{y})=A^{-1} \vec{y}=\vec{x}
$$

Invertible Matrices

For an invertible linear transformation T, the relationships between $T, T^{-1}, A, A^{-1}, \vec{x}$, and \vec{y} are as follows:

$$
T(\vec{x})=A \vec{x}=\vec{y}
$$

$$
T^{-1}(\vec{y})=A^{-1} \vec{y}=\vec{x}
$$

Invertible Matrices

All invertible matrices are square

However, not all square matrices are invertible.

Invertible Matrices

Consider the system

$$
A \vec{x}=\vec{b}, \quad \vec{b} \neq \overrightarrow{0}
$$

Invertible Matrices

Consider the system

$$
A \vec{x}=\vec{b}, \quad \vec{b} \neq \overrightarrow{0}
$$

If A is invertible, then

$$
\vec{x}=A^{-1} \vec{b}
$$

is the only solution to the system.

Invertible Matrices

Consider the system

$$
A \vec{x}=\vec{b}, \quad \vec{b} \neq \overrightarrow{0}
$$

If A is invertible, then

$$
\vec{x}=A^{-1} \vec{b}
$$

is the only solution to the system.

If A is not invertible, the system

$$
A \vec{x}=\vec{b}
$$

has either no solution or an infinite number of solutions.

Invertible Matrices

Consider the homogenous system:

$$
A \vec{x}=\overrightarrow{0}
$$

$\vec{x}=\overrightarrow{0}$ is always a solution to this system.

Invertible Matrices

Consider the homogenous system:

$$
A \vec{x}=\overrightarrow{0}
$$

$\vec{x}=\overrightarrow{0}$ is always a solution to this system.

If A is invertible, $\vec{x}=\overrightarrow{0}$ is the only solution to this system.

Invertible Matrices

Consider the homogenous system:

$$
A \vec{x}=\overrightarrow{0}
$$

$\vec{x}=\overrightarrow{0}$ is always a solution to this system.

If A is invertible, $\vec{x}=\overrightarrow{0}$ is the only solution to this system.

If A is not invertible, the system has infinitely many solutions.

Inverse of a 2×2 Matrix

Suppose A is a 2×2 matrix.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Inverse of a 2×2 Matrix

Suppose A is a 2×2 matrix.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

A is invertible if and only if $a d-b c \neq 0$

Inverse of a 2×2 Matrix

Suppose A is a 2×2 matrix.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

A is invertible if and only if $a d-b c \neq 0$
When $a d-b c \neq 0$,

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Finding the Inverse of a Matrix

To find the inverse of a matrix A, form the $n \times 2 n$ augmented matrix

$$
\left[\begin{array}{l:l}
A & I_{n}
\end{array}\right]
$$

Finding the Inverse of a Matrix

To find the inverse of a matrix A, form the $n \times 2 n$ augmented matrix

$$
\left[\begin{array}{l:l}
A & I_{n}
\end{array}\right]
$$

Next compute the reduced row-echelon form of $\left[\begin{array}{cl}A & I_{n} \\ & \end{array}\right]$.

Finding the Inverse of a Matrix

To find the inverse of a matrix A, form the $n \times 2 n$ augmented matrix

$$
\left[\begin{array}{l:l}
A & I_{n}
\end{array}\right]
$$

Next compute the reduced row-echelon form of $\left[\begin{array}{cl}A & I_{n} \\ & \end{array}\right]$.
If

$$
\operatorname{rref}\left[\begin{array}{l:l}
A & I_{n}
\end{array}\right]=\left[\begin{array}{l:l}
I_{n} & B
\end{array}\right] \text { then } A^{-1}=B
$$

Finding the Inverse of a Matrix

To find the inverse of a matrix A, form the $n \times 2 n$ augmented matrix

$$
\left[\begin{array}{l:l}
A & I_{n}
\end{array}\right]
$$

Next compute the reduced row-echelon form of $\left[\begin{array}{ll}A & I_{n} \\ & \end{array}\right]$.
If

$$
\operatorname{rref}\left[\begin{array}{l:l}
A & I_{n}
\end{array}\right]=\left[\begin{array}{l:l}
I_{n} & B
\end{array}\right] \text { then } A^{-1}=B
$$

If the left half of $\operatorname{rref}\left[A I_{n}\right.$] is not I_{n}, then A is not invertible.

