Inverse of a Linear Transformation

Gene Quinn

Invertible Functions

In general, an arbitrary function $T : X \to Y$ that maps a set X into Y is *invertible* if, for any $y \in Y$, there is one and only one $x \in X$ that satisfies the equation

y = T(x)

Invertible Functions

In general, an arbitrary function $T : X \to Y$ that maps a set X into Y is *invertible* if, for any $y \in Y$, there is one and only one $x \in X$ that satisfies the equation

$$y = T(x)$$

When this is true, the *inverse function* $T^{-1}: Y \to X$ is the function with the property that

$$T^{-1}(y) = x$$

Invertible Functions

In general, an arbitrary function $T : X \to Y$ that maps a set X into Y is *invertible* if, for any $y \in Y$, there is one and only one $x \in X$ that satisfies the equation

$$y = T(x)$$

When this is true, the *inverse function* $T^{-1}: Y \to X$ is the function with the property that

$$T^{-1}(y) = x$$

T and T^{-1} have the following properties:

 $T^{-1}(T(x)) = x \quad \forall x \in X \text{ and } T(T^{-1}(y)) = y \quad \forall y \in Y$

Invertible Linear Transformations

A linear transformation

 $T: \mathbb{R}^m \to \mathbb{R}^n$ defined by $T(\vec{x}) = A\vec{x} = \vec{y}$

for some $n \times m$ matrix A is invertible if and only if the following two conditions are satisfied:

Invertible Linear Transformations

A linear transformation

 $T: \mathbb{R}^m \to \mathbb{R}^n$ defined by $T(\vec{x}) = A\vec{x} = \vec{y}$

for some $n \times m$ matrix A is invertible if and only if the following two conditions are satisfied:

1) n = m, that is, $T : \mathbb{R}^n \to \mathbb{R}^n$.

Invertible Linear Transformations

A linear transformation

 $T: \mathbb{R}^m \to \mathbb{R}^n$ defined by $T(\vec{x}) = A\vec{x} = \vec{y}$

for some $n \times m$ matrix A is invertible if and only if the following two conditions are satisfied:

1)
$$n=m$$
, that is, $T:\mathbb{R}^n
ightarrow\mathbb{R}^n$.

2) The reduced row-echelon form of A is an identity matrix:

$$\operatorname{rref}(A); = I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

When a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is invertible, the matrix A associated with T

$$T(\vec{x}) = A\vec{x} = \vec{y}$$

is said to be **invertible**.

When a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is invertible, the matrix A associated with T

$$T(\vec{x}) = A\vec{x} = \vec{y}$$

is said to be **invertible**.

The matrix associated with the *inverse* of T,

$$T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$$

is denoted by A^{-1} :

$$T^{-1}(\vec{y}) = A^{-1}\vec{y} = \vec{x}$$

For an invertible linear transformation T, the relationships between T, T^{-1} , A, A^{-1} , \vec{x} , and \vec{y} are as follows:

$$T(\vec{x}) = A\vec{x} = \vec{y}$$

$$T^{-1}(\vec{y}) = A^{-1}\vec{y} = \vec{x}$$

All invertible matrices are square

However, not all square matrices are invertible.

Consider the system

$$A\vec{x} = \vec{b}, \quad \vec{b} \neq \vec{0}$$

Consider the system

$$A\vec{x} = \vec{b}, \quad \vec{b} \neq \vec{0}$$

If A is invertible, then

$$\vec{x} = A^{-1}\vec{b}$$

is the *only* solution to the system.

Consider the system

$$A\vec{x} = \vec{b}, \quad \vec{b} \neq \vec{0}$$

If A is invertible, then

$$\vec{x} = A^{-1}\vec{b}$$

is the *only* solution to the system.

If A is not invertible, the system

$$A\vec{x}=\vec{b}$$

has either no solution or an infinite number of solutions.

Consider the **homogenous** system:

$$A\vec{x} = \vec{0}$$

 $\vec{x} = \vec{0}$ is *always* a solution to this system.

Consider the **homogenous** system:

$$A\vec{x} = \vec{0}$$

 $\vec{x} = \vec{0}$ is *always* a solution to this system.

If A is invertible, $\vec{x} = \vec{0}$ is the *only* solution to this system.

Consider the **homogenous** system:

$$A\vec{x} = \vec{0}$$

 $\vec{x} = \vec{0}$ is *always* a solution to this system.

If A is invertible, $\vec{x} = \vec{0}$ is the *only* solution to this system.

If A is not invertible, the system has infinitely many solutions.

Inverse of a 2×2 **Matrix**

Suppose A is a 2×2 matrix.

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

Inverse of a 2×2 **Matrix**

Suppose A is a 2×2 matrix.

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

A is invertible if and only if $ad - bc \neq 0$

Inverse of a 2×2 **Matrix**

Suppose A is a 2×2 matrix.

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

A is invertible if and only if $ad - bc \neq 0$ When $ad - bc \neq 0$,

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

To find the inverse of a matrix A, form the $n \times 2n$ augmented matrix

$$\left[\begin{array}{c}A & I_n\end{array}\right]$$

To find the inverse of a matrix A, form the $n \times 2n$ augmented matrix

$$A \mid I_n$$

Next compute the reduced row-echelon form of $\begin{vmatrix} A & I_n \end{vmatrix}$.

To find the inverse of a matrix A, form the $n \times 2n$ augmented matrix

$$\left[\begin{array}{c} A & I_n \end{array}\right]$$

Next compute the reduced row-echelon form of $\begin{bmatrix} A & I_n \end{bmatrix}$.

$\operatorname{rref}\left[\begin{array}{c}A \mid I_n\end{array}\right] = \left[\begin{array}{c}I_n \mid B\end{array}\right] \quad \text{then} \quad A^{-1} = B$

lf

To find the inverse of a matrix A, form the $n \times 2n$ augmented matrix

$$\left[\begin{array}{c} A & I_n \end{array}\right]$$

Next compute the reduced row-echelon form of $\begin{bmatrix} A & I_n \end{bmatrix}$.

lf

$$\operatorname{rref}\left[\begin{array}{c}A & I_n\end{array}\right] = \left[\begin{array}{c}I_n & B\end{array}\right] \quad \operatorname{then} \quad A^{-1} = B$$

If the left half of rref $\begin{bmatrix} A & I_n \end{bmatrix}$ is not I_n , then A is not invertible.