# Introduction and Terminology 

Gene Quinn

## Scalars and Vectors

We will begin by defining two entities, scalars and vectors

## Scalars and Vectors

We will begin by defining two entities, scalars and vectors
We will define a scalar $k$ to be simply a real number,

$$
k \in \mathbb{R}
$$

## Scalars and Vectors

We will begin by defining two entities, scalars and vectors
We will define a scalar $k$ to be simply a real number,

$$
k \in \mathbb{R}
$$

The elements of the set of scalars, being real numbers, inherit all of the properties of real numbers with respect to addition, multiplication, ordering, etc.

## Vectors

The text defines a vector as a rectangular array of real numbers with a single column.

## Vectors

The text defines a vector as a rectangular array of real numbers with a single column.

While it works and doesn't require any additional terminology, as soon as possible you should abandon this definition in favor of a definition based on ordered $n$-tuples of real numbers:

The notation

$$
\mathbb{R}^{n}=\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}
$$

represents the $n$-fold Cartesian product of the set of real numbers $\mathbb{R}$ with itself.

## Vectors

The Cartesian product of two sets $A$ and $B$, denoted by $A \times B$, is defined to be the set of all ordered pairs $(a, b)$ whose first element belongs to $A$ and second element belongs to $B$.

## Vectors

The Cartesian product of two sets $A$ and $B$, denoted by $A \times B$, is defined to be the set of all ordered pairs $(a, b)$ whose first element belongs to $A$ and second element belongs to $B$.

In set-builder notation,

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

## Vectors

Example: If

$$
A=\{1,2\} \quad \text { and } \quad B=\{3,4,5\}
$$

then

$$
A \times B=\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\}
$$

## Vectors

Example: If

$$
A=\{1,2\} \quad \text { and } \quad B=\{3,4,5\}
$$

then

$$
A \times B=\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\}
$$

If $A$ and $B$ are the same set, the shorthand notation

$$
A \times A=A^{2}
$$

is used. The main advantage of this notation is that it is convenient for constructs like

$$
A \times A \times A \times A \times A \times A \times A=A^{7}
$$

## Vectors

In fact entities like

$$
A \times A \times A \times A \times A \times A \times A=A^{7}
$$

occur frequently, usually in the form

$$
\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}=\mathbb{R}^{7}
$$

## Vectors

In fact entities like

$$
A \times A \times A \times A \times A \times A \times A=A^{7}
$$

occur frequently, usually in the form

$$
\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}=\mathbb{R}^{7}
$$

$\mathbb{R}^{7}$ is just shorthand notation for the set of all ordered 7 -tuples of real numbers. In set-builder notation, this is

$$
\mathbb{R}^{7}=\left\{\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right): v_{i} \in \mathbb{R}, i=1,2, \ldots, 7\right\}
$$

## Vectors

We will identify each ordered 7-tuple of real numbers with a vector:

$$
\vec{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right)
$$

## Vectors

We will identify each ordered 7 -tuple of real numbers with a vector:

$$
\vec{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right)
$$

The individual elements of the order 7-tuple are scalars (i.e., real numbers), and are called the components of the vector $\vec{v}$.

## Vectors

More generally, we will identify each ordered $n$-tuple of real numbers with a vector:

$$
\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

## Vectors

More generally, we will identify each ordered $n$-tuple of real numbers with a vector:

$$
\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

The set consisting of all vectors with $n$ components will be identified with set of all ordered $n$-tuples of real numbers $\mathbb{R}^{n}$, and we will denote the fact that a vector $\vec{v}$ belongs to this set with the notation

$$
\vec{v} \in \mathbb{R}^{n}
$$

## Vectors

As it suits our purpose, we will sometimes represent the vector

$$
\vec{v} \in \mathbb{R}^{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

as a rectangular array with a single column (a column vector):

$$
\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

## Vectors

At other times, we will find it more convenient to represent the vector

$$
\vec{v} \in \mathbb{R}^{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

as a rectangular array with a single row (a row vector):

$$
\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]
$$

## Vectors

At other times, we will find it more convenient to represent the vector

$$
\vec{v} \in \mathbb{R}^{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

as a rectangular array with a single row (a row vector):

$$
\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]
$$

It's probably best to think of the vector $\vec{v} \in \mathbb{R}^{n}$ itself as the ordered $n$-tuple of real numbers, with no particular arrangement in terms of rows and columns implied.

## Vectors

Algebraic manipulations will often require that we represent the vector $\vec{v} \in \mathbb{R}^{n}$ in either column vector or row vector form.

## Vectors

Algebraic manipulations will often require that we represent the vector $\vec{v} \in \mathbb{R}^{n}$ in either column vector or row vector form.

Following the text, we will adopt the convention that when a vector $\vec{v} \in \mathbb{R}^{n}$ appears in an algebraic expression, we will assume it is represented in column vector form unless otherwise stated.

## Vectors

Although we have introduced them in a completely abstract setting, vectors are commonly used in the sciences and other applications to represent quantities that have both an associated magnitude and a direction.

## Vectors

Although we have introduced them in a completely abstract setting, vectors are commonly used in the sciences and other applications to represent quantities that have both an associated magnitude and a direction.
Examples of such quantities from physics are velocity and force.

Vectors are a natural choice for representing these phenomena.

## Vectors

We will define the length of a vector as follows:
If $\vec{v} \in \mathbb{R}^{n}$ is a vector, the length of $\vec{v}$, denoted by $\|\vec{v}\|$, is defined to be the scalar :

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

## Vectors

We will define the length of a vector as follows:
If $\vec{v} \in \mathbb{R}^{n}$ is a vector, the length of $\vec{v}$, denoted by $\|\vec{v}\|$, is defined to be the scalar :

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

If we think of a vector $\vec{v}$ as an entity having an associated magnitude and direction, the length would represent the magnitude.

## Vectors

We will define the length of a vector as follows:
If $\vec{v} \in \mathbb{R}^{n}$ is a vector, the length of $\vec{v}$, denoted by $\|\vec{v}\|$, is defined to be the scalar :

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

If we think of a vector $\vec{v}$ as an entity having an associated magnitude and direction, the length would represent the magnitude.

A vector $\vec{u}$ having

$$
\|\vec{u}\|=1
$$

is called a unit vector.

## Vectors

The standard representation of a vector $\vec{v} \in \mathbb{R}^{n}$ is a directed line segment or arrow connecting the origin, $(0,0, \ldots, 0)$ to the point with coordinates $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, usually with an arrowhead drawn at the end that is not the origin. Here are some vectors in $\mathbb{R}^{2}$ :


