Introduction and Terminology

Gene Quinn

Scalars and Vectors

We will begin by defining two entities, scalars and vectors

Scalars and Vectors

We will begin by defining two entities, scalars and vectors We will define a scalar k to be simply a real number,

 $k \in \mathbb{R}$

Scalars and Vectors

We will begin by defining two entities, scalars and vectors We will define a scalar k to be simply a real number,

 $k \in \mathbb{R}$

The elements of the set of scalars, being real numbers, inherit all of the properties of real numbers with respect to addition, multiplication, ordering, etc.

The text defines a vector as a rectangular array of real numbers with a single column.

The text defines a vector as a rectangular array of real numbers with a single column.

While it works and doesn't require any additional terminology, as soon as possible you should abandon this definition in favor of a definition based on ordered *n*-tuples of real numbers:

The notation

$$\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$$

represents the *n*-fold Cartesian product of the set of real numbers \mathbb{R} with itself.

The *Cartesian product* of two sets *A* and *B*, denoted by $A \times B$, is defined to be the set of all **ordered pairs** (a, b) whose first element belongs to *A* and second element belongs to *B*.

The *Cartesian product* of two sets *A* and *B*, denoted by $A \times B$, is defined to be the set of all **ordered pairs** (a, b) whose first element belongs to *A* and second element belongs to *B*.

In set-builder notation,

$$A \times B = \{(a,b) : a \in A, b \in B\}$$

Example: If

$$A = \{1, 2\}$$
 and $B = \{3, 4, 5\}$

then

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

Example: If

$$A = \{1, 2\}$$
 and $B = \{3, 4, 5\}$

then

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

If A and B are the same set, the shorthand notation

$$A \times A = A^2$$

is used. The main advantage of this notation is that it is convenient for constructs like

$$A \times A \times A \times A \times A \times A \times A = A^7$$

In fact entities like

$A \times A \times A \times A \times A \times A \times A = A^7$

occur frequently, usually in the form

$\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^7$

In fact entities like

$$A \times A \times A \times A \times A \times A \times A = A^7$$

occur frequently, usually in the form

 $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^7$

 \mathbb{R}^7 is just shorthand notation for the set of all ordered 7-tuples of real numbers. In set-builder notation, this is

$$\mathbb{R}^7 = \{ (v_1, v_2, v_3, v_4, v_5, v_6, v_7) : v_i \in \mathbb{R}, \ i = 1, 2, \dots, 7 \}$$

We will identify each ordered 7-tuple of real numbers with a **vector**:

$$\vec{v} = (v_1, v_2, v_3, v_4, v_5, v_6, v_7)$$

We will identify each ordered 7-tuple of real numbers with a **vector**:

$$\vec{v} = (v_1, v_2, v_3, v_4, v_5, v_6, v_7)$$

The individual elements of the order 7-tuple are *scalars* (i.e., real numbers), and are called the **components** of the vector \vec{v} .

More generally, we will identify each ordered *n*-tuple of real numbers with a **vector**:

$$\vec{v} = (v_1, v_2, \dots, v_n)$$

More generally, we will identify each ordered *n*-tuple of real numbers with a **vector**:

$$\vec{v} = (v_1, v_2, \dots, v_n)$$

The set consisting of all vectors with n components will be identified with set of all ordered n-tuples of real numbers \mathbb{R}^n , and we will denote the fact that a vector \vec{v} belongs to this set with the notation

$$\vec{v} \in \mathbb{R}^n$$

As it suits our purpose, we will sometimes represent the vector

$$\vec{v} \in \mathbb{R}^n = (v_1, v_2, \dots, v_n)$$

as a rectangular array with a single column (a column vector):

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

At other times, we will find it more convenient to represent the vector

$$\vec{v} \in \mathbb{R}^n = (v_1, v_2, \dots, v_n)$$

as a rectangular array with a single row (a row vector):

$$\left[\begin{array}{cccc}v_1 & v_2 & \cdots & v_n\end{array}\right]$$

At other times, we will find it more convenient to represent the vector

$$\vec{v} \in \mathbb{R}^n = (v_1, v_2, \dots, v_n)$$

as a rectangular array with a single row (a row vector):

$$\left[\begin{array}{cccc}v_1 & v_2 & \cdots & v_n\end{array}\right]$$

It's probably best to think of the vector $\vec{v} \in \mathbb{R}^n$ itself as the ordered *n*-tuple of real numbers, with no particular arrangement in terms of rows and columns implied.

Algebraic manipulations will often require that we represent the vector $\vec{v} \in \mathbb{R}^n$ in either column vector or row vector form.

Algebraic manipulations will often require that we represent the vector $\vec{v} \in \mathbb{R}^n$ in either column vector or row vector form.

Following the text, we will adopt the convention that when a vector $\vec{v} \in \mathbb{R}^n$ appears in an algebraic expression, we will assume it is represented in column vector form unless otherwise stated.

Although we have introduced them in a completely abstract setting, vectors are commonly used in the sciences and other applications to represent quantities that have both an associated *magnitude* and a *direction*.

Although we have introduced them in a completely abstract setting, vectors are commonly used in the sciences and other applications to represent quantities that have both an associated *magnitude* and a *direction*.

Examples of such quantities from physics are velocity and force.

Vectors are a natural choice for representing these phenomena.

We will define the **length** of a vector as follows:

If $\vec{v} \in \mathbb{R}^n$ is a vector, the **length** of \vec{v} , denoted by $\|\vec{v}\|$, is defined to be the *scalar* :

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

We will define the **length** of a vector as follows:

If $\vec{v} \in \mathbb{R}^n$ is a vector, the **length** of \vec{v} , denoted by $\|\vec{v}\|$, is defined to be the *scalar* :

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

If we think of a vector \vec{v} as an entity having an associated magnitude and direction, the length would represent the magnitude.

We will define the **length** of a vector as follows:

If $\vec{v} \in \mathbb{R}^n$ is a vector, the **length** of \vec{v} , denoted by $\|\vec{v}\|$, is defined to be the *scalar* :

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

If we think of a vector \vec{v} as an entity having an associated magnitude and direction, the length would represent the magnitude.

A vector \vec{u} having

$$\|\vec{u}\| = 1$$

is called a **unit vector**.

The standard representation of a vector $\vec{v} \in \mathbb{R}^n$ is a directed line segment or *arrow* connecting the origin, $(0, 0, \ldots, 0)$ to the point with coordinates (v_1, v_2, \ldots, v_n) , usually with an arrowhead drawn at the end that is not the origin. Here are some vectors in \mathbb{R}^2 :

