Determinants of Elementary Matrices

Gene Quinn

Elementary Matrices

Recall that an elementary matrix is any matrix that can be obtained from the identity matrix I_{n} by exactly one of the following operations:

- Add a multiple of one row to another row
- Multiply a row by some constant k
- Interchange two rows

Elementary Matrices

Recall that an elementary matrix is any matrix that can be obtained from the identity matrix I_{n} by exactly one of the following operations:

- Add a multiple of one row to another row
- Multiply a row by some constant k
- Interchange two rows

We will use the Weierstrass definition of the determinant to establish the determinant of each of the three types of elementary matrices.

The Weierstrass Definition

Recall that, for a square matrix A the determinant function $\operatorname{det}(A)$ has three properties:

- $\operatorname{det}(A)$ is linear in each row of A.
- Interchanging two rows changes the sign of $\operatorname{det}(A)$.
- The determinant of the identity matrix $\operatorname{det}(I)$ is 1 .

The Weierstrass Definition

Recall that, for a square matrix A the determinant function $\operatorname{det}(A)$ has three properties:

- $\operatorname{det}(A)$ is linear in each row of A.
- Interchanging two rows changes the sign of $\operatorname{det}(A)$.
- The determinant of the identity matrix $\operatorname{det}(I)$ is 1 .

For each positive integer n, there is exactly one function

$$
\operatorname{det}(A): \mathbb{R}^{n \times n} \rightarrow \mathbb{R}=f\left(a_{11}, \ldots, a_{n n}\right)
$$

that has these three properties.

Interchange Two Rows

First we consider elementary matrices that interchange two rows.

We obtain this type of elementary matrix by interchanging two rows of an identity matrix.

Interchange Two Rows

First we consider elementary matrices that interchange two rows.

We obtain this type of elementary matrix by interchanging two rows of an identity matrix.

Multiplying an arbitrary matrix A on the left by a matrix of this type will interchange the same two rows of A.

Interchange Two Rows

The third property states that the determinant of the identity matrix is 1 .

Interchange Two Rows

The third property states that the determinant of the identity matrix is 1 .

The second property states that interchanging rows reverses the sign of the determinant.

Interchange Two Rows

The third property states that the determinant of the identity matrix is 1 .

The second property states that interchanging rows reverses the sign of the determinant.

Taken together, the two properties imply that the determinant of an elementary matrix of this type is -1 .

Multiply a Row by a Constant
The second type of elementary matrix consists of an identity matrix with a single entry multiplied by a constant k.

Multiply a Row by a Constant

The second type of elementary matrix consists of an identity matrix with a single entry multiplied by a constant k.

When an arbitrary matrix A is multiplied on the left by this elementary matrix, the corresponding row of A is multiplied by k.

Multiply a Row by a Constant
The third Weierstrass property states that $\operatorname{det}(I)=1$.
We may write I in terms of unit vectors e_{i},

$$
\operatorname{det}(I)=\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{j} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]=1
$$

Multiply a Row by a Constant
The elementary matrix E is obtained by multiplying one row of the identity matrix I by a constant k :

$$
E=\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
k \cdot \vec{e}_{j} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]
$$

Multiply a Row by a Constant

By the first Weierstrass property, linearity in the rows,

$$
\operatorname{det}(E)=\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
k \cdot \vec{e}_{j} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]=k \cdot \operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{j} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]=k \operatorname{det}(I)=k \cdot 1=k
$$

Add a Multiple of One Row to Another

The third type of elementary matrix is obtained by adding a constant k times of one row of the identity matrix I to another row of I.

Add a Multiple of One Row to Another

The third type of elementary matrix is obtained by adding a constant k times of one row of the identity matrix I to another row of I.

When an arbitrary matrix A is multiplied on the left by this elementary matrix, the corresponding row of A is multiplied by k and added to the corresponding other row of A.

Add a Multiple of One Row to Another

This elementary matrix E is obtained by multiplying one row of the identity matrix I by a constant k and adding it to another:

$$
E=\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{j}+k \vec{e}_{i} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]
$$

Add a Multiple of One Row to Another

By the first Weierstrass property (linearity in the rows),

$$
\operatorname{det} E=\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{j}+k \vec{e}_{i} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]=\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{j} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]+\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
k \vec{e}_{i} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]
$$

Add a Multiple of One Row to Another

By the first Weierstrass property (linearity in the rows),

$$
\operatorname{det} E=\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{j}+k \vec{e}_{i} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]=\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{j} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]+\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
k \vec{e}_{i} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]
$$

The first matrix on the left is I, so its determinant is 1 .

Add a Multiple of One Row to Another

$$
\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{j}+k \vec{e}_{i} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]=1+k \operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]
$$

Add a Multiple of One Row to Another

$$
\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{j}+k \vec{e}_{i} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]=1+k \operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]
$$

Since the matrix on the right has two identical rows, its determinant is zero.

Add a Multiple of One Row to Another

The final result is

$$
\operatorname{det}\left[\begin{array}{c}
\vec{e}_{1} \\
\vdots \\
\vec{e}_{i} \\
\vdots \\
\vec{e}_{j}+k \vec{e}_{i} \\
\vdots \\
\vec{e}_{n}
\end{array}\right]=1+k \cdot 0=1
$$

Summary

The three kinds of elementary matrices and their determinants are:

- Add a multiple of one row to another: $\operatorname{det}\left(E_{1}\right)=1$
- Multiply a row by a constant k : $\operatorname{det}\left(E_{2}\right)=k$
- Exchange two rows: $\operatorname{det}\left(E_{3}\right)=-1$

