Dot Products

Gene Quinn

Definition

An important construct in linear algebra is the dot product of two vectors.

Suppose

$$
\vec{v} \in \mathbb{R}^{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \quad \text { and } \quad \vec{w} \in \mathbb{R}^{n}=\left(w_{1}, w_{2}, \ldots w_{n}\right)
$$

are vectors with n components each.
We define the dot product of \vec{v} and \vec{w}, denoted by $\vec{v} \cdot \vec{w}$, as

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}
$$

Definition

An important construct in linear algebra is the dot product of two vectors.

Suppose

$$
\vec{v} \in \mathbb{R}^{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \quad \text { and } \quad \vec{w} \in \mathbb{R}^{n}=\left(w_{1}, w_{2}, \ldots w_{n}\right)
$$

are vectors with n components each.
We define the dot product of \vec{v} and \vec{w}, denoted by $\vec{v} \cdot \vec{w}$, as

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}
$$

The dot product of two vectors $\vec{v} \cdot \vec{w}$ is a scalar

Algebraic Properties

The dot product has the following algebraic properties:
For arbitrary vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ and arbitrary scalar $k \in \mathbb{R}$,

$$
\begin{array}{ll}
\vec{v} \cdot \vec{w} & =\vec{w} \cdot \vec{v} \\
(\vec{u}+\vec{v}) \cdot \vec{w} & =\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w} \\
(k \vec{v}) \cdot \vec{w} & =k(\vec{v} \cdot \vec{w}) \\
\vec{v} \cdot \vec{v} & >0 \quad \text { for all } \vec{v} \neq \overrightarrow{0}
\end{array}
$$

Algebraic Properties

The dot product has the following algebraic properties:
For arbitrary vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ and arbitrary scalar $k \in \mathbb{R}$,

$$
\begin{array}{ll}
\vec{v} \cdot \vec{w} & =\vec{w} \cdot \vec{v} \\
(\vec{u}+\vec{v}) \cdot \vec{w} & =\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w} \\
(k \vec{v}) \cdot \vec{w} & =k(\vec{v} \cdot \vec{w}) \\
\vec{v} \cdot \vec{v} & >0 \text { for all } \vec{v} \neq \overrightarrow{0}
\end{array}
$$

It's not hard to verify these identities, and in fact doing so is a good exercise.

The Dot Product and Length

There is an important relationship between the length of a vector $\|\vec{v}\|$ and its dot product with itself. Suppose

$$
\vec{v} \in \mathbb{R}^{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

The Dot Product and Length

There is an important relationship between the length of a vector $\|\vec{v}\|$ and its dot product with itself. Suppose

$$
\vec{v} \in \mathbb{R}^{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

Then

$$
\begin{gathered}
\vec{v} \cdot \vec{v}=v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}= \\
=\left(\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}\right)^{2}=\|\vec{v}\|^{2}
\end{gathered}
$$

The Dot Product and Length

There is an important relationship between the length of a vector $\|\vec{v}\|$ and its dot product with itself. Suppose

$$
\vec{v} \in \mathbb{R}^{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

Then

$$
\begin{gathered}
\vec{v} \cdot \vec{v}=v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}= \\
=\left(\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}\right)^{2}=\|\vec{v}\|^{2}
\end{gathered}
$$

SO

$$
\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}
$$

The Dot Product and Length

The fact that

$$
\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}
$$

gives us the following technique for obtaining a unit vector \vec{u} that points in the same direction as a given vector \vec{v} :

$$
\vec{u}=\frac{\vec{v}}{\sqrt{\vec{v} \cdot \vec{v}}}=\frac{\vec{v}}{\|\vec{v}\|}
$$

The Dot Product and Length

A well-known identity (which for some reason is not in the text) is the following: If θ is the angle between two vectors \vec{v} and \vec{w}, then

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta
$$

The Dot Product and Length

A well-known identity (which for some reason is not in the text) is the following: If θ is the angle between two vectors \vec{v} and \vec{w}, then

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta
$$

For example, if $\vec{v} \in \mathbb{R}^{2}=(1,0)$ and $\vec{w} \in \mathbb{R}^{2}=(1,1)$, then

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}=1 \cdot 1+0 \cdot 1=1
$$

The Dot Product and Length

A well-known identity (which for some reason is not in the text) is the following: If θ is the angle between two vectors \vec{v} and \vec{w}, then

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta
$$

For example, if $\vec{v} \in \mathbb{R}^{2}=(1,0)$ and $\vec{w} \in \mathbb{R}^{2}=(1,1)$, then

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}=1 \cdot 1+0 \cdot 1=1
$$

Note that $\|\vec{v}\|=1$ and $\|\vec{w}\|=\sqrt{2}$.
The angle between \vec{v} and \vec{w} is $\pi / 4$, so $\cos \theta=1 / \sqrt{2}$, and

$$
\|\vec{v}\|\|\vec{w}\| \cos \theta=1 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{2}}=1=\vec{v} \cdot \vec{w}
$$

The Dot Product and Length

$$
\|\vec{v}\|\|\vec{w}\| \cos \theta=1 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{2}}=1=\vec{v} \cdot \vec{w}
$$

