THE DETERMINANT OF A DIAGONAL MATRIX

Definition:

An $n \times n$ matrix A with $(i j)^{t h}$ entry $a_{i j}$ is called:

$$
\begin{array}{llll}
\text { upper triangular } & \text { if } & a_{i j}=0 & \text { whenever } \quad i>j \\
\text { lower triangular } & \text { if } \quad a_{i j}=0 & \text { whenever } \quad i<j \\
\text { diagonal } & \text { if } & a_{i j}=0 & \text { whenever } \quad i \neq j
\end{array}
$$

Definition: (permutations and inversions definition of the determinant)

If A is an $n \times n$ matrix,

$$
\operatorname{det}(A)=\sum_{\text {all }} \pm a_{1 j_{1}} \cdot a_{2 j_{2}} \cdots a_{n j_{n}}
$$

where

$$
j_{1}, j_{2}, \ldots, j_{n}
$$

is an n-permutation (i.e., a list of the first n positive integers written in any order) and the leading sign in each term is:
positive if the number of inversions in the n-permutation j_{1}, \ldots, j_{n} is even
negative if the number of inversions in the n-permutation j_{1}, \ldots, j_{n} is odd
and by an inversion we mean an ordered pair $\left(j_{m}, j_{k}\right)$ consisting of two elements of the n-permutation

$$
j_{1}, j_{2}, \ldots, j_{n}
$$

having $m<k$ and $j_{m}>j_{k}$.

Theorem: The determinant of an $n \times n$ diagonal matrix A is the product of its diagonal entries:

$$
\operatorname{det}(A)=\prod_{i=1}^{n} a_{i i}
$$

Proof. By definition,

$$
\operatorname{det}(A)=\sum_{\text {all }} \pm a_{1 j_{1}} \cdot a_{2 j_{2}} \cdots a_{n j_{n}}
$$

By hypothesis, A is diagonal, so

$$
a_{i j}=0 \quad \text { whenever } \quad i \neq j
$$

Consequently, every nonzero term in the sum comprising $\operatorname{det}(A)$ must have:

$$
j_{1}=1, j_{2}=2, j_{3}=3, \ldots, j_{n}=n
$$

The only n-permutation that satisfies this condition is:

$$
j_{1}, j_{2}, j_{3}, \ldots, j_{n}=1,2,3, \ldots, n
$$

which has zero inversions, so the expression for the determinant reduces to a single term:

$$
\operatorname{det}(A)=a_{11} \cdot a_{22} \cdots a_{n n}=\prod_{i=1}^{n} a_{i i}
$$

