Defining the Determinant using Permutations

Gene Quinn

n-Permutations

Definition: An n-permutation is a list of the first n positive integers

$$
\{1,2, \ldots, n\}
$$

in any order.

n-Permutations

Definition: An n-permutation is a list of the first n positive integers

$$
\{1,2, \ldots, n\}
$$

in any order.
The following are the 6 possible 3 -permutations:

$$
1,2,3 \quad 1,3,2 \quad 2,1,3 \quad 2,3,1 \quad 3,1,2 \quad 3,2,1
$$

n-Permutations

Definition: An n-permutation is a list of the first n positive integers

$$
\{1,2, \ldots, n\}
$$

in any order.
The following are the 6 possible 3 -permutations:

$$
1,2,3 \quad 1,3,2 \quad 2,1,3 \quad 2,3,1 \quad 3,1,2 \quad 3,2,1
$$

In general, the number of different n-permutations is

$$
n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1
$$

n-Permutations

Definition: Construct an ordered pair (a, b) consisting of any two elements from an n-permutation, written in the order that they appear in the n-permutation.

An inversion is an ordered pair constructed in this manner that has $a>b$.

n-Permutations

Definition: Construct an ordered pair (a, b) consisting of any two elements from an n-permutation, written in the order that they appear in the n-permutation.

An inversion is an ordered pair constructed in this manner that has $a>b$.

Given the 4-permutation $3,1,2,4$, we can construct

$$
\binom{4}{2}=\frac{4!}{2!(4-2)!}=\frac{4 \cdot 3}{2 \cdot 1}=6
$$

ordered pairs (preserving the order in the 4-permutation):

$$
(3,1)(3,2)(3,4)(1,2)(1,4)(2,4) ;
$$

n-Permutations

Among the 6 ordered pairs (a, b) constructed from the 4-permuation 3, 1, 2, 4,

$$
(3,1)(3,2)(3,4)(1,2)(1,4)(2,4) ;
$$

the first and second are inversions because $b>a$.

n-Permutations

Among the 6 ordered pairs (a, b) constructed from the 4 -permuation 3, 1, 2, 4,

$$
(3,1)(3,2)(3,4)(1,2)(1,4)(2,4) ;
$$

the first and second are inversions because $b>a$.
We say that the 4-permutation 3,1,2, 4 has two inversions.

n-Permutations

Among the 10 ordered pairs (a, b) constructed from the 5 -permuation $3,1,5,2,4$,

$$
(3,1)(3,5)(3,2)(3,4)(1,5)(1,2)(1,4)(5,2)(5,4)(2,4)
$$

the first, third, eighth, and ninth are inversions because $b>a$.

n-Permutations

Among the 10 ordered pairs (a, b) constructed from the 5 -permuation $3,1,5,2,4$,

$$
(3,1)(3,5)(3,2)(3,4)(1,5)(1,2)(1,4)(5,2)(5,4)(2,4)
$$

the first, third, eighth, and ninth are inversions because $b>a$.

We say that the 5 -permutation $3,1,5,2,4$ has four inversions.

n-Permutations

For an $n \times n$ matrix A, consider the set of all possible products of the form

$$
a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}}
$$

where $j_{1}, j_{2}, \ldots, j_{n}$ is an n-permutation.

n-Permutations

For an $n \times n$ matrix A, consider the set of all possible products of the form

$$
a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}}
$$

where $j_{1}, j_{2}, \ldots, j_{n}$ is an n-permutation.
Notice that this is the set of all products we can form by choosing n elements from A so that:

- exactly one element is chosen from each row
- exactly one element is chosen from each column

The Determinant and Permutations

Theorem: For any $n \times n$ matrix A,

$$
\operatorname{det}(A)=\sum \pm a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}}
$$

where:

- The sum is taken over all possible n-permutations $j_{1}, j_{2}, \ldots, j_{n}$
- The sign is taken to be + if $j_{1}, j_{2}, \ldots, j_{n}$ has an even number of inversions
- The sign is taken to be - if $j_{1}, j_{2}, \ldots, j_{n}$ has an odd number of inversions

The Determinant and Permutations

Example: For $n=2$, there are exactly two 2 -permutations,

$$
(1,2)(2,1)
$$

The Determinant and Permutations

Example: For $n=2$, there are exactly two 2 -permutations,

$$
(1,2)(2,1)
$$

The first has zero inversions, the second has one.
By the previous theorem, the determinant of a 2×2 matrix A is:

$$
\operatorname{det}(A)=(+1) a_{11} a_{22}+(-1) a_{12} a_{21}=a_{11} a_{22}-a_{12} a_{21}
$$

The Determinant and Permutations

Example: For $n=2$, there are exactly two 2 -permutations,

$$
(1,2)(2,1)
$$

The first has zero inversions, the second has one.
By the previous theorem, the determinant of a 2×2 matrix A is:

$$
\operatorname{det}(A)=(+1) a_{11} a_{22}+(-1) a_{12} a_{21}=a_{11} a_{22}-a_{12} a_{21}
$$

This is equivalent to the formula $a d-b c$ we have been using.

The Determinant and Permutations

Example: For $n=3$, there are exactly six 3 -permutations,

$$
1,2,3 \quad 1,3,2 \quad 2,1,3 \quad 2,3,1 \quad 3,1,2 \quad 3,2,1
$$

The Determinant and Permutations

Example: For $n=3$, there are exactly six 3 -permutations,

$$
1,2,3 \quad 1,3,2 \quad 2,1,3 \quad 2,3,1 \quad 3,1,2 \quad 3,2,1
$$

The inversions for the six 3 -permutations are, respectively, $0,1,1,2,2$, and 3 , so the associated signs are ,,,,,+--++- .
By the previous theorem, the determinant of a 3×3 matrix A is:

$$
\begin{aligned}
\operatorname{det}(A)= & (+1) a_{11} a_{22} a_{33}+(-1) a_{11} a_{23} a_{32}+(-1) a_{12} a_{21} a_{33} \\
& +(+1) a_{12} a_{23} a_{31}+(+1) a_{13} a_{21} a_{32}+(-1) a_{13} a_{22} a_{31}
\end{aligned}
$$

The Determinant and Permutations

Example: For $n=3$, there are exactly six 3 -permutations,

$$
1,2,3 \quad 1,3,2 \quad 2,1,3 \quad 2,3,1 \quad 3,1,2 \quad 3,2,1
$$

The inversions for the six 3 -permutations are, respectively, $0,1,1,2,2$, and 3 , so the associated signs are ,,,,,+--++- .
By the previous theorem, the determinant of a 3×3 matrix A is:

$$
\begin{aligned}
\operatorname{det}(A)= & (+1) a_{11} a_{22} a_{33}+(-1) a_{11} a_{23} a_{32}+(-1) a_{12} a_{21} a_{33} \\
& +(+1) a_{12} a_{23} a_{31}+(+1) a_{13} a_{21} a_{32}+(-1) a_{13} a_{22} a_{31}
\end{aligned}
$$

This formula is equivalent to Sarrus's rule (p. 248)

