Defining the Determinant using Permutations

Gene Quinn

Definition: An *n*-permutation is a list of the first n positive integers

 $\{1, 2, \ldots, n\}$

in any order.

Definition: An *n*-permutation is a list of the first n positive integers

 $\{1, 2, \ldots, n\}$

in any order.

The following are the 6 possible 3-permutations:

 $1, 2, 3 \quad 1, 3, 2 \quad 2, 1, 3 \quad 2, 3, 1 \quad 3, 1, 2 \quad 3, 2, 1$

Definition: An *n*-permutation is a list of the first n positive integers

 $\{1, 2, \ldots, n\}$

in any order.

The following are the 6 possible 3-permutations:

$$1, 2, 3$$
 $1, 3, 2$ $2, 1, 3$ $2, 3, 1$ $3, 1, 2$ $3, 2, 1$

In general, the number of different *n*-permutations is

$$n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1$$

Definition: Construct an ordered pair (a, b) consisting of any two elements from an *n*-permutation, written in the order that they appear in the *n*-permutation.

An **inversion** is an ordered pair constructed in this manner that has a > b.

Definition: Construct an ordered pair (a, b) consisting of any two elements from an *n*-permutation, written in the order that they appear in the *n*-permutation.

An **inversion** is an ordered pair constructed in this manner that has a > b.

Given the 4-permutation 3, 1, 2, 4, we can construct

$$\binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4\cdot 3}{2\cdot 1} = 6$$

ordered pairs (preserving the order in the 4-permutation):

(3,1) (3,2) (3,4) (1,2) (1,4) (2,4);

Among the 6 ordered pairs (a, b) constructed from the 4-permuation 3, 1, 2, 4,

```
(3,1) (3,2) (3,4) (1,2) (1,4) (2,4);
```

the first and second are inversions because b > a.

Among the 6 ordered pairs (a, b) constructed from the 4-permuation 3, 1, 2, 4,

```
(3,1) (3,2) (3,4) (1,2) (1,4) (2,4);
```

the first and second are inversions because b > a.

We say that the 4-permutation 3, 1, 2, 4 has two inversions.

Among the 10 ordered pairs (a, b) constructed from the 5-permuation 3, 1, 5, 2, 4,

(3,1) (3,5) (3,2) (3,4) (1,5) (1,2) (1,4) (5,2) (5,4) (2,4)

the first, third, eighth, and ninth are inversions because b > a.

Among the 10 ordered pairs (a, b) constructed from the 5-permuation 3, 1, 5, 2, 4,

(3,1) (3,5) (3,2) (3,4) (1,5) (1,2) (1,4) (5,2) (5,4) (2,4)

the first, third, eighth, and ninth are inversions because b > a.

We say that the 5-permutation 3, 1, 5, 2, 4 has four inversions.

For an $n \times n$ matrix A, consider the set of all possible products of the form

 $a_{1j_1}a_{2j_2}\cdots a_{nj_n}$

where j_1, j_2, \ldots, j_n is an *n*-permutation.

For an $n \times n$ matrix A, consider the set of all possible products of the form

 $a_{1j_1}a_{2j_2}\cdots a_{nj_n}$

where j_1, j_2, \ldots, j_n is an *n*-permutation.

Notice that this is the set of all products we can form by choosing n elements from A so that:

- exactly one element is chosen from each row
- exactly one element is chosen from each column

Theorem: For any $n \times n$ matrix A,

$$\det(A) = \sum \pm a_{1j_1} a_{2j_2} \cdots a_{nj_n}$$

where:

- The sum is taken over all possible *n*-permutations j_1, j_2, \ldots, j_n
- The sign is taken to be + if j_1, j_2, \ldots, j_n has an even number of inversions
- The sign is taken to be if j_1, j_2, \ldots, j_n has an odd number of inversions

Example: For n = 2, there are exactly two 2-permutations,

(1,2) (2,1)

Example: For n = 2, there are exactly two 2-permutations,

(1,2) (2,1)

The first has zero inversions, the second has one.

By the previous theorem, the determinant of a 2×2 matrix A is:

 $\det(A) = (+1)a_{11}a_{22} + (-1)a_{12}a_{21} = a_{11}a_{22} - a_{12}a_{21}$

Example: For n = 2, there are exactly two 2-permutations,

(1,2) (2,1)

The first has zero inversions, the second has one.

By the previous theorem, the determinant of a 2×2 matrix A is:

$$\det(A) = (+1)a_{11}a_{22} + (-1)a_{12}a_{21} = a_{11}a_{22} - a_{12}a_{21}$$

This is equivalent to the formula ad - bc we have been using.

Example: For n = 3, there are exactly six 3-permutations,

 $1, 2, 3 \quad 1, 3, 2 \quad 2, 1, 3 \quad 2, 3, 1 \quad 3, 1, 2 \quad 3, 2, 1$

Example: For n = 3, there are exactly six 3-permutations,

 $1, 2, 3 \quad 1, 3, 2 \quad 2, 1, 3 \quad 2, 3, 1 \quad 3, 1, 2 \quad 3, 2, 1$

The inversions for the six 3-permutations are, respectively, 0,1,1,2,2, and 3, so the associated signs are +, -, -, +, +, -.

By the previous theorem, the determinant of a 3×3 matrix *A* is:

 $\det(A) = (+1)a_{11}a_{22}a_{33} + (-1)a_{11}a_{23}a_{32} + (-1)a_{12}a_{21}a_{33}$ $+ (+1)a_{12}a_{23}a_{31} + (+1)a_{13}a_{21}a_{32} + (-1)a_{13}a_{22}a_{31}$

Example: For n = 3, there are exactly six 3-permutations,

 $1, 2, 3 \quad 1, 3, 2 \quad 2, 1, 3 \quad 2, 3, 1 \quad 3, 1, 2 \quad 3, 2, 1$

The inversions for the six 3-permutations are, respectively, 0,1,1,2,2, and 3, so the associated signs are +, -, -, +, +, -.

By the previous theorem, the determinant of a 3×3 matrix *A* is:

 $\det(A) = (+1)a_{11}a_{22}a_{33} + (-1)a_{11}a_{23}a_{32} + (-1)a_{12}a_{21}a_{33}$

 $+ (+1)a_{12}a_{23}a_{31} + (+1)a_{13}a_{21}a_{32} + (-1)a_{13}a_{22}a_{31}$

This formula is equivalent to Sarrus's rule (p. 248)