Computing Determinants with Gauss-Jordan Operations

Gene Quinn (from Carlos Curley's notes)

Computing Determinants

We have previously developed a formula for the determinant of a 2×2 matrix,

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

Computing Determinants

We have previously developed a formula for the determinant of a 2×2 matrix,

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

We now wish to extend this result to allow us to find determinants of larger (square) matrices.

Computing Determinants

We proved the following properties for determinants of 2×2 matrices:

- $\operatorname{det}\left(I_{2}\right)=1$
- If A is upper triangular (or diagonal, or lower triangular), $\operatorname{det}(A)$ is the product of the diagonal elements of A.
- Adding a multiple of one row of A to another leaves $\operatorname{det}(A)$ unchanged
- Interchanging two rows changes the sign of $\operatorname{det}(A)$
- Multiplying a row of A by a constant k multiplies $\operatorname{det}(A)$ by k.

Computing Determinants

We proved the following properties for determinants of 2×2 matrices:

- $\operatorname{det}\left(I_{2}\right)=1$
- If A is upper triangular (or diagonal, or lower triangular), $\operatorname{det}(A)$ is the product of the diagonal elements of A.
- Adding a multiple of one row of A to another leaves $\operatorname{det}(A)$ unchanged
- Interchanging two rows changes the sign of $\operatorname{det}(A)$
- Multiplying a row of A by a constant k multiplies $\operatorname{det}(A)$ by k.

We also noted (without proof) that these properties hold for $n \times n$ matrices, $n=2,3, \ldots$.

Computing Determinants

Assuming the five properties from the previous slide hold for $n \times n$ matrices, we can develop a method of computing the determinant for any square matrix.

The method will be based on Gauss-Jordan or row operations.

Computing Determinants

Assuming the five properties from the previous slide hold for $n \times n$ matrices, we can develop a method of computing the determinant for any square matrix.

The method will be based on Gauss-Jordan or row operations.

There are a number of (quite different) algorithms available for computing the determinant of an arbitrary square matrix A.

The method based on Gauss-Jordan operations is one of the most efficient in terms of the number of arithmetic operations required.

Computing Determinants

In outline form, the method is:

- Start with a square matrix A
- If necessary, perform row operations to transform it to an upper triangular matrix
- Keep track of each row operation and its effect on the determinant of the matrix
- When an upper triangular matrix is obtained, compute its determinant as the product of its diagonal entries
- Use the record of the changes to the determinant from the row operations to work backwards to the determinant of the original matrix A.

Elementary Matrices

Recall that the Gauss-Jordan reduction transforms a matrix A to $\operatorname{rref}(A)$ by a series of operations on the rows of A.

Elementary Matrices

Recall that the Gauss-Jordan reduction transforms a matrix A to $\operatorname{rref}(A)$ by a series of operations on the rows of A.

Each operation consists of one of the following kinds of row operations:

- Add a multiple of one row to another row
- Multiply a row by some constant k
- Interchange two rows

Elementary Matrices

Recall that the Gauss-Jordan reduction transforms a matrix A to $\operatorname{rref}(A)$ by a series of operations on the rows of A.

Each operation consists of one of the following kinds of row operations:

- Add a multiple of one row to another row
- Multiply a row by some constant k
- Interchange two rows

Although we considered them purely algebraic operations, in fact each of them is equivalent to multiplication of A on the left by a matrix.

Elementary Matrices

Definition: An elementary matrix is any matrix that can be obtained from the identity matrix I_{n} by exactly one of the following operations:

- Add a multiple of one row to another row
- Multiply a row by some constant k
- Interchange two rows

Elementary Matrices

Definition: An elementary matrix is any matrix that can be obtained from the identity matrix I_{n} by exactly one of the following operations:

- Add a multiple of one row to another row
- Multiply a row by some constant k
- Interchange two rows

Gauss-Jordan or row-reduction is equivalent to multiplying the original matrix A on the left by a sequence of elementary matrices.

Elementary Matrices

Definition: An elementary matrix is any matrix that can be obtained from the identity matrix I_{n} by exactly one of the following operations:

- Add a multiple of one row to another row
- Multiply a row by some constant k
- Interchange two rows

Gauss-Jordan or row-reduction is equivalent to multiplying the original matrix A on the left by a sequence of elementary matrices.

We will examine this assertion in more detail.

Elementary Matrices

- Add a multiple of one row to another row

Start with an identity matrix

$$
\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

Elementary Matrices

Now for some $k \in \mathbb{R}$ add k times the second row to the first:

$$
E_{1}=\left[\begin{array}{llll}
1 & k & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

(The result is an elementary matrix)

Elementary Matrices

Consider the effect of multiplying an arbitrary $n \times n$ matrix A (written as a column of row vectors) on the left by this matrix:

$$
E_{1} A=\left[\begin{array}{cccc}
1 & k & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1}+k a_{2} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Elementary Matrices

Consider the effect of multiplying an arbitrary $n \times n$ matrix A (written as a column of row vectors) on the left by this matrix:

$$
E_{1} A=\left[\begin{array}{cccc}
1 & k & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1}+k a_{2} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

We obtained the elementary matrix E_{1} by adding k times the second row of I_{n} to the first row.
Multiplying A on the left by E_{1} has the same effect on A.

Elementary Matrices

We now turn our attention to the determinant of the product $E_{1} A$.

From the algebraic properties of determinants,

$$
\operatorname{det}\left(E_{1} A\right)=\operatorname{det}\left(E_{1}\right) \cdot \operatorname{det}(A)
$$

Elementary Matrices

We now turn our attention to the determinant of the product $E_{1} A$.

From the algebraic properties of determinants,

$$
\operatorname{det}\left(E_{1} A\right)=\operatorname{det}\left(E_{1}\right) \cdot \operatorname{det}(A)
$$

Note that E_{1} is upper triangular. Any elementary matrix obtained in the manner E_{1} was obtained will be either upper triangular or lower triangular.

Elementary Matrices

We now turn our attention to the determinant of the product $E_{1} A$.

From the algebraic properties of determinants,

$$
\operatorname{det}\left(E_{1} A\right)=\operatorname{det}\left(E_{1}\right) \cdot \operatorname{det}(A)
$$

Note that E_{1} is upper triangular. Any elementary matrix obtained in the manner E_{1} was obtained will be either upper triangular or lower triangular.

By a previous result (Property 2 of determinants), this means that $\operatorname{det}\left(E_{1}\right)$ is the product of the diagonal elements of E_{1}, which are all 1. Therefore,
$\operatorname{det}\left(E_{1}\right)=1$ and $\operatorname{det}\left(E_{1} A\right)=\operatorname{det}\left(E_{1}\right) \cdot \operatorname{det}(A)=\operatorname{det}(A)$

Elementary Matrices

- Multiply a row by some constant k

Once again, start with an identity matrix

$$
\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

Elementary Matrices

Now for some $k \in \mathbb{R}$ multiply the second row by k :

$$
E_{2}=\left[\begin{array}{llll}
1 & & & \\
& k & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

(The result is another type of elementary matrix)

Elementary Matrices

Consider the effect of multiplying an arbitrary $n \times n$ matrix A (written as a column of row vectors) on the left by this matrix:

$$
E_{2} A=\left[\begin{array}{llll}
1 & & & \\
& k & & \\
& & \ddots & \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
k a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Elementary Matrices

Consider the effect of multiplying an arbitrary $n \times n$ matrix A (written as a column of row vectors) on the left by this matrix:

$$
E_{2} A=\left[\begin{array}{llll}
1 & & & \\
& k & & \\
& & \ddots & \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
k a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

We obtained the elementary matrix E_{2} by multiplying the second row of I_{n} by k.
Multiplying A on the left by E_{2} has the same effect on A.

Elementary Matrices

Now consider the determinant of the product $E_{2} A$.
From the algebraic properties of determinants,

$$
\operatorname{det}\left(E_{2} A\right)=\operatorname{det}\left(E_{2}\right) \cdot \operatorname{det}(A)
$$

Elementary Matrices

Now consider the determinant of the product $E_{2} A$.
From the algebraic properties of determinants,

$$
\operatorname{det}\left(E_{2} A\right)=\operatorname{det}\left(E_{2}\right) \cdot \operatorname{det}(A)
$$

Note that E_{2} is diagonal.
By a previous result (Property 2 of determinants), this means that $\operatorname{det}\left(E_{2}\right)$ is the product of the diagonal elements of E_{2}, one of which is k and the rest are all 1 . Therefore,
$\operatorname{det}\left(E_{2}\right)=k \quad$ and $\quad \operatorname{det}\left(E_{2} A\right)=\operatorname{det}\left(E_{2}\right) \cdot \operatorname{det}(A)=k \cdot \operatorname{det}(A)$

Elementary Matrices

- Interchange two rows

Once again, start with an identity matrix

$$
\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

Elementary Matrices

Now interchange the first and second rows:

$$
E_{3}=\left[\begin{array}{llll}
0 & 1 & & \\
1 & 0 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

(The result is another type of elementary matrix)

Elementary Matrices

Consider the effect of multiplying an arbitrary $n \times n$ matrix A (written as a column of row vectors) on the left by this matrix:

$$
E_{3} A=\left[\begin{array}{cccc}
0 & 1 & & \\
1 & 0 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{2} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Elementary Matrices

Consider the effect of multiplying an arbitrary $n \times n$ matrix A (written as a column of row vectors) on the left by this matrix:

$$
E_{3} A=\left[\begin{array}{cccc}
0 & 1 & & \\
1 & 0 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{2} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]
$$

We obtained the elementary matrix E_{3} by interchanging the first two rows of I_{n}.
Multiplying A on the left by E_{3} has the same effect on A.

Elementary Matrices

Now consider the determinant of the product $E_{3} A$.
From the algebraic properties of determinants,

$$
\operatorname{det}\left(E_{3} A\right)=\operatorname{det}\left(E_{3}\right) \cdot \operatorname{det}(A)
$$

Elementary Matrices

Now consider the determinant of the product $E_{3} A$.
From the algebraic properties of determinants,

$$
\operatorname{det}\left(E_{3} A\right)=\operatorname{det}\left(E_{3}\right) \cdot \operatorname{det}(A)
$$

By two previous results (Properties 1 and 4 of determinants), interchanging two rows reverses the sign of the determinant, and $\operatorname{det}\left(I_{n}\right)=1$. This means that $\operatorname{det}\left(E_{3}\right)=-1$. Therefore, $\operatorname{det}\left(E_{3}\right)=-1$ and $\operatorname{det}\left(E_{3} A\right)=\operatorname{det}\left(E_{3}\right) \cdot \operatorname{det}(A)=-\operatorname{det}(A)$

Computing the Determinant

Now we can write down our algorithm for using
Gauss-Jordan reduction to compute a determinant.
Starting with an arbitrary $n \times n$ matrix A, we perform a series of row operations, each of which is equivalent to multiplication of A on the left by some elementary matrix E_{i}.
After the first row operation, we have a new matrix B_{1}, which is the product $E_{1} A$:

$$
E_{1} A=B_{1}
$$

Computing the Determinant

Now we can write down our algorithm for using
Gauss-Jordan reduction to compute a determinant.
Starting with an arbitrary $n \times n$ matrix A, we perform a series of row operations, each of which is equivalent to multiplication of A on the left by some elementary matrix E_{i}.
After the first row operation, we have a new matrix B_{1}, which is the product $E_{1} A$:

$$
E_{1} A=B_{1}
$$

After two row operations, we have the matrix B_{2},

$$
E_{2} E_{1} A=B_{1}
$$

Computing the Determinant

Suppose after k row operations, the matrix B_{k} is upper triangular:

$$
E_{k} \cdots E_{2} E_{1} A=B_{k}
$$

Computing the Determinant

Suppose after k row operations, the matrix B_{k} is upper triangular:

$$
E_{k} \cdots E_{2} E_{1} A=B_{k}
$$

Since the determinant of a matrix product is the product of the determinants,

$$
\operatorname{det}\left(E_{k}\right) \cdots \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right) \operatorname{det}(A)=\operatorname{det}\left(B_{k}\right)
$$

Computing the Determinant

At this point, since B_{k} is upper triangular,

- $\operatorname{det}\left(B_{k}\right)$ is the product of the diagonal elements of B_{k}.

Computing the Determinant

At this point, since B_{k} is upper triangular,

- $\operatorname{det}\left(B_{k}\right)$ is the product of the diagonal elements of B_{k}.

For each of the elementary matrices, we know the determinant as well:

- If E_{i} adds a multiple of one row to another, $\operatorname{det}\left(E_{i}\right)=1$
- If E_{i} multiplies a row by a constant $k, \operatorname{det}\left(E_{i}\right)=k$
- If E_{i} interchanges two rows, $\operatorname{det}\left(E_{i}\right)=-1$

Computing the Determinant

At this point, since B_{k} is upper triangular,

- $\operatorname{det}\left(B_{k}\right)$ is the product of the diagonal elements of B_{k}.

For each of the elementary matrices, we know the determinant as well:

- If E_{i} adds a multiple of one row to another, $\operatorname{det}\left(E_{i}\right)=1$
- If E_{i} multiplies a row by a constant $k, \operatorname{det}\left(E_{i}\right)=k$
- If E_{i} interchanges two rows, $\operatorname{det}\left(E_{i}\right)=-1$

So we can compute $\operatorname{det}(A)$ as

$$
\operatorname{det}(A)=\frac{\operatorname{det}\left(B_{k}\right)}{\operatorname{det}\left(E_{k}\right) \cdots \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right)}
$$

Computing the Determinant

Example: Compute the determinant of

$$
A=\left[\begin{array}{rrr}
2 & 4 & -2 \\
1 & 3 & 1 \\
3 & 3 & -11
\end{array}\right]
$$

Computing the Determinant

Example: Compute the determinant of

$$
A=\left[\begin{array}{rrr}
2 & 4 & -2 \\
1 & 3 & 1 \\
3 & 3 & -11
\end{array}\right]
$$

For the first row operation, exchange rows 1 and 2:

$$
E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{1} A=B_{1}=\left[\begin{array}{rrr}
1 & 3 & 1 \\
2 & 4 & -2 \\
3 & 3 & -11
\end{array}\right]
$$

Note that $\operatorname{det}\left(E_{1}\right)=-1$

Computing the Determinant

For the second row operation, add -2 times the first row to the second:

$$
E_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{2} E_{1} A=B_{2}=\left[\begin{array}{rrr}
1 & 3 & 1 \\
0 & -2 & -4 \\
3 & 3 & -11
\end{array}\right]
$$

Note that $\operatorname{det}\left(E_{2}\right)=1$

Computing the Determinant

For the third row operation, add -3 times the first row to the third:

$$
E_{3}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] \quad E_{3} E_{2} E_{1} A=B_{3}=\left[\begin{array}{rrr}
1 & 3 & 1 \\
0 & -2 & -4 \\
0 & -6 & -14
\end{array}\right]
$$

Note that $\operatorname{det}\left(E_{3}\right)=1$

Computing the Determinant

For the fourth row operation, multiply the second row by $-1 / 2$ to get a leading 1 :

$$
\begin{gathered}
E_{4}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & \frac{-1}{2} & 0 \\
0 & 0 & 1
\end{array}\right] \\
E_{4} E_{3} E_{2} E_{1} A=B_{4}=\left[\begin{array}{rrr}
1 & 3 & 1 \\
0 & 1 & 2 \\
0 & -6 & -14
\end{array}\right]
\end{gathered}
$$

Note that $\operatorname{det}\left(E_{4}\right)=-1 / 2$

Computing the Determinant

For the fifth row operation, add 6 times the second row to the third row:

$$
\begin{gathered}
E_{5}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 6 & 1
\end{array}\right] \\
E_{5} E_{4} E_{3} E_{2} E_{1} A=B_{5}=\left[\begin{array}{rrr}
1 & 3 & 1 \\
0 & 1 & 2 \\
0 & 0 & -2
\end{array}\right]
\end{gathered}
$$

Note that $\operatorname{det}\left(E_{5}\right)=1$

Computing the Determinant

Now since B_{5} is upper triangular, no more row operations are required.

$$
E_{5} E_{4} E_{3} E_{2} E_{1} A=B_{5}=\left[\begin{array}{rrr}
1 & 3 & 1 \\
0 & 1 & 2 \\
0 & 0 & -2
\end{array}\right]
$$

Computing the Determinant

Now since B_{5} is upper triangular, no more row operations are required.

$$
E_{5} E_{4} E_{3} E_{2} E_{1} A=B_{5}=\left[\begin{array}{rrr}
1 & 3 & 1 \\
0 & 1 & 2 \\
0 & 0 & -2
\end{array}\right]
$$

Note that $\operatorname{det}\left(B_{5}\right)=1 \cdot 1 \cdot-2=-2$
Now we can write

$$
\operatorname{det}\left(E_{5}\right) \operatorname{det}\left(E_{4}\right) \operatorname{det}\left(E_{3}\right) \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right) \operatorname{det}(A)=\operatorname{det}\left(B_{5}\right)
$$

Computing the Determinant

So

$$
\operatorname{det}(A)=\frac{\operatorname{det}\left(B_{5}\right)}{\operatorname{det}\left(E_{5}\right) \operatorname{det}\left(E_{4}\right) \operatorname{det}\left(E_{3}\right) \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right)}
$$

Computing the Determinant

So

$$
\operatorname{det}(A)=\frac{\operatorname{det}\left(B_{5}\right)}{\operatorname{det}\left(E_{5}\right) \operatorname{det}\left(E_{4}\right) \operatorname{det}\left(E_{3}\right) \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right)}
$$

Plugging in the values for the determinants,

$$
\operatorname{det}(A)=\frac{-2}{(1) \cdot\left(\frac{-1}{2}\right)(1)(1)(-1)}=\frac{-2}{\frac{1}{2}}=-4
$$

Computing the Determinant

Example: Compute the determinant of

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
4 & 9 & 12 \\
5 & 11 & 15
\end{array}\right]
$$

Computing the Determinant

Example: Compute the determinant of

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
4 & 9 & 12 \\
5 & 11 & 15
\end{array}\right]
$$

For the first row operation, add -4 times the first row to the second:

$$
E_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad E_{1} A=B_{1}=\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & 0 \\
5 & 11 & 15
\end{array}\right]
$$

Note that $\operatorname{det}\left(E_{1}\right)=1$

Computing the Determinant

For the second row operation, add -5 times the first row to the third:

$$
E_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-5 & 0 & 1
\end{array}\right] \quad E_{2} E_{1} A=B_{2}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Note that $\operatorname{det}\left(E_{2}\right)=1$

Computing the Determinant

For the third row operation, add -1 times the second row to the third:

$$
E_{3}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \quad E_{3} E_{2} E_{1} A=B_{3}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Note that $\operatorname{det}\left(E_{3}\right)=1$

Computing the Determinant

No more row operations are required because B_{3} is upper triangular, and so the determinant is the product of the diagonal entries:

$$
\operatorname{det}\left(B_{3}\right)=1 \cdot 1 \cdot 0=0
$$

Computing the Determinant

No more row operations are required because B_{3} is upper triangular, and so the determinant is the product of the diagonal entries:

$$
\operatorname{det}\left(B_{3}\right)=1 \cdot 1 \cdot 0=0
$$

Since

$$
\begin{gathered}
E_{3} E_{2} E_{1} A=B_{3} \\
\operatorname{det}\left(E_{3}\right) \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right) \operatorname{det}(A)=\operatorname{det}\left(B_{3}\right)
\end{gathered}
$$

Computing the Determinant

No more row operations are required because B_{3} is upper triangular, and so the determinant is the product of the diagonal entries:

$$
\operatorname{det}\left(B_{3}\right)=1 \cdot 1 \cdot 0=0
$$

Since

$$
\begin{gathered}
E_{3} E_{2} E_{1} A=B_{3} \\
\operatorname{det}\left(E_{3}\right) \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right) \operatorname{det}(A)=\operatorname{det}\left(B_{3}\right) \\
\operatorname{det}(A)=\frac{\operatorname{det}\left(B_{3}\right)}{\operatorname{det}\left(E_{3}\right) \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right)}=\frac{0}{1 \cdot 1 \cdot 1}=0
\end{gathered}
$$

Computing the Determinant

Note that

$$
B_{3}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

SO

$$
\operatorname{rref}(A)=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \neq I_{3}
$$

which indicates that A does not have an inverse.

Computing the Determinant

Note that

$$
B_{3}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

SO

$$
\operatorname{rref}(A)=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \neq I_{3}
$$

which indicates that A does not have an inverse.
This is consistent with the fact that $\operatorname{det}(A)=0$.

