
Development of 2x2 Determinants
Gene Quinn (from Carlos Curley’s notes)
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Inverses
A real number A ∈ R has a multiplicative inverse if and only
if:

a 6= 0

in which case a−1 = 1/a.
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Inverses
A real number A ∈ R has a multiplicative inverse if and only
if:

a 6= 0

in which case a−1 = 1/a.

We would like to generalize this concept to the set of
square matrices:

We want to associate a single real number d with a square
matrix in such a way that A has a matrix inverse if and only
if:

d 6= 0
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Determinants
More precisely, for an n × n square matrix A, we want to
find a real-valued function of the n2 real numbers that
comprise A:

f : R
n×n → R = f(a11, . . . , ann)

which we will call the determinant of A and denote by
det(A), with the following property:

A has an inverse if and only if

det(A) 6= 0
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The 2 × 2 Case
Our first task will be to prove that such a function exists.
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The 2 × 2 Case
Our first task will be to prove that such a function exists.

One way to prove that something exists is to find it.

We’ll start by finding such a function for all 2 × 2 matrices.
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The 2 × 2 Case
Our first task will be to prove that such a function exists.

One way to prove that something exists is to find it.

We’ll start by finding such a function for all 2 × 2 matrices.

Suppose A is an invertible 2 × 2 matrix:

A =

[

a b

c d

]
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The 2 × 2 Case
Now let’s find A−1.

As usual, we form an augmented matrix with A and I2,
[

a b 1 0

c d 0 1

]
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The 2 × 2 Case
Now let’s find A−1.

As usual, we form an augmented matrix with A and I2,
[

a b 1 0

c d 0 1

]

We now perform row operations to transform the left half of
the augmented matrix to I2, and the right half becomes A−1.
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The 2 × 2 Case

[

a b 1 0

c d 0 1

]

Assuming a 6= 0, we multiply the first row by 1/a to get a
leading 1:

[

1 b

a

1

a
0

c d 0 1

]
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The 2 × 2 Case

[

a b 1 0

c d 0 1

]

Assuming a 6= 0, we multiply the first row by 1/a to get a
leading 1:

[

1 b

a

1

a
0

c d 0 1

]

(If a = 0, we have to interchange rows and divide by c)

Development of 2x2 Determinants – p.6/26



The 2 × 2 Case
Now add −c times the first row to the second:

[

1 b

a

1

a
0

c d 0 1

]
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The 2 × 2 Case
Now add −c times the first row to the second:

[

1 b

a

1

a
0

c d 0 1

]

The result is:
[

1 b

a

1

a
0

0 d − c b

a
−c1

a
1

]
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The 2 × 2 Case
With a bit of simplification,

[

1 b

a

1

a
0

0 d − c b

a
−c1

a
1

]

becomes
[

1 b

a

1

a
0

0 ad−bc

a

−c

a
1

]
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The 2 × 2 Case
With a bit of simplification,

[

1 b

a

1

a
0

0 d − c b

a
−c1

a
1

]

becomes
[

1 b

a

1

a
0

0 ad−bc

a

−c

a
1

]

Normally at this point we multiply the second row by the
reciprocal of

ad − bc

a

to obtain a leading 1.
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The 2 × 2 Case
However, note that if

ad − bc

a
= 0 ⇒ ad − bc = 0

it is impossible to do this.
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The 2 × 2 Case
However, note that if

ad − bc

a
= 0 ⇒ ad − bc = 0

it is impossible to do this.

In this case, we can never reduce the left half of the
augmented matrix to I2.
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The 2 × 2 Case
Assuming ad − bc 6= 0, we multiply the second row by
a/(ad − bc) to get a leading 1:

[

1 b

a

1

a
0

0 ad−bc

a

−c

a
1

]
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The 2 × 2 Case
Assuming ad − bc 6= 0, we multiply the second row by
a/(ad − bc) to get a leading 1:

[

1 b

a

1

a
0

0 ad−bc

a

−c

a
1

]

The result is
[

1 b

a

1

a
0

0 1 −c

ad−bc

a

ad−bc

]
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The 2 × 2 Case
Finally we complete the reduction by adding −b/a times the
second row to the first:

[

1 b

a

1

a
0

0 1 −c

ad−bc

a

ad−bc

]
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The 2 × 2 Case
Finally we complete the reduction by adding −b/a times the
second row to the first:

[

1 b

a

1

a
0

0 1 −c

ad−bc

a

ad−bc

]

The right half of the augmented matrix is now A−1:
[

1 0 d

ad−bc

−b

ad−bc

0 1 −c

ad−bc

a

ad−bc

]
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The 2 × 2 Case
Since we can only complete the reduction of a 2 × 2 matrix
A when ad − bc = 0, we can say that:

A 2 × 2 matrix

A =

[

a b

c d

]

has an inverse if and only if

ad − bc = 0
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The 2 × 2 Case
Since we can only complete the reduction of a 2 × 2 matrix
A when ad − bc = 0, we can say that:

A 2 × 2 matrix

A =

[

a b

c d

]

has an inverse if and only if

ad − bc = 0

In this case,

A−1 =
1

ad − bc

[

d −b

−c a

]
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The 2 × 2 Case
In light of the previous example for a 2 × 2 matrix

A =

[

a b

c d

]

we define the determinant of A, denoted by det(A), to be

det(A) = ad − bc
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Properties of the Determinant
Property 1:

det(I2) = det

[

1 0

0 1

]

= 1
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Properties of the Determinant
Property 1:

det(I2) = det

[

1 0

0 1

]

= 1

Proof of Property 1: Directly from the definition of det(A), if

A =

[

a b

c d

]

=

[

1 0

0 1

]

then
det(A) = ad − bc = 1 · 1 − 0 · 0 = 1
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Properties of the Determinant
Property 2: If a 2 × 2 matrix A is upper triangular,

det(A) = det

[

a b

0 d

]

= ad

(The determinant is the product of the diagonal entries.)

Development of 2x2 Determinants – p.15/26



Properties of the Determinant
Property 2: If a 2 × 2 matrix A is upper triangular,

det(A) = det

[

a b

0 d

]

= ad

(The determinant is the product of the diagonal entries.)
Proof of Property 2: Directly from the definition of det(A), if

A =

[

a b

0 d

]

then
det(A) = ad − bc = ad − b · 0 = ad
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Properties of the Determinant
Note that the determinant is also the product of the
diagonal entries when A is lower triangular,

det

[

a 0

c d

]

= ad

or diagonal:

det

[

a 0

0 d

]

= ad
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Properties of the Determinant
Note that the determinant is also the product of the
diagonal entries when A is lower triangular,

det

[

a 0

c d

]

= ad

or diagonal:

det

[

a 0

0 d

]

= ad

The proof of these statements is similar to the proof for the
upper triangular case.
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Properties of the Determinant
Property 3: If a 2 × 2 matrix B is obtained from a 2 × 2
matrix A by adding a multiple of the first row to the second,
then the determinants are the same:

det(B) = det(A)
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Properties of the Determinant
Property 3: If a 2 × 2 matrix B is obtained from a 2 × 2
matrix A by adding a multiple of the first row to the second,
then the determinants are the same:

det(B) = det(A)

Proof of Property 3: Let

A =

[

a b

c d

]
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Properties of the Determinant
Form B by adding k times the first row of A to the second:

A =

[

a b

c d

]

B =

[

a b

c + ka d + kb

]
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Properties of the Determinant
Form B by adding k times the first row of A to the second:

A =

[

a b

c d

]

B =

[

a b

c + ka d + kb

]

Directly from the definition,

det(B) = det

[

a b

c + ka d + kb

]

= a(d + kb) − b(c + ka)

= ad + abk − bc − abk = ad − bc = det(A)
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Properties of the Determinant
A similar argument can be used to establish that adding a
multiple of the second row to the first leaves the
determinant unchanged.
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Properties of the Determinant
A similar argument can be used to establish that adding a
multiple of the second row to the first leaves the
determinant unchanged.

So, we may make the more general statement:

Property 3: If a 2 × 2 matrix B is obtained from a 2 × 2
matrix A by adding a multiple of one row to another, the
determinant is unchanged; that is,

det(B) = det(A)
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Properties of the Determinant
Property 4: If a 2 × 2 matrix B is obtained by interchanging
the rows of a 2 × 2 matrix A,

det(B) = − det(A)

(Interchanging rows changes the sign of the determinant)
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Properties of the Determinant
Property 4: If a 2 × 2 matrix B is obtained by interchanging
the rows of a 2 × 2 matrix A,

det(B) = − det(A)

(Interchanging rows changes the sign of the determinant)
Proof of Property 4: Directly from the definition, if

A =

[

a b

c d

]

and B =

[

c d

a b

]

then

det(B) = cb − ad = −(ad − bc) = − det(A)
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Properties of the Determinant
Property 5: If a 2 × 2 matrix B is obtained by multiplying a
row of a 2 × 2 matrix A by a constant k then,

det(B) = k · det(A)

(Multiplying a row by k multiplies the determinant by k)
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Properties of the Determinant
Property 5: If a 2 × 2 matrix B is obtained by multiplying a
row of a 2 × 2 matrix A by a constant k then,

det(B) = k · det(A)

(Multiplying a row by k multiplies the determinant by k)
Proof of Property 5: Directly from the definition, if

A =

[

a b

c d

]

and B =

[

ka kb

c d

]

then

det(B) = adk − bck = k(ad − bc) = k · det(A)
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Properties of the Determinant
A similar argument will show the same result if the second
row is multiplied by k.
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Determinants of Higher Order Matrices
The results we obtained for 2 × 2 matrices generalize to
n × n matrices.
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Determinants of Higher Order Matrices
The results we obtained for 2 × 2 matrices generalize to
n × n matrices.

More precisely,

It is possible to define det(A) for a square matrix of any
dimension n (The exact definition depends on n)

Properties 1-5 of det(A) hold for n = 2, 3, 4 . . .
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Summary
For a square matrix A, the following statements are
equivalent:

det(A) 6= 0

A has an inverse

The system Ax = b has exactly one solution for any
vector b ∈ R

n (including ~0)

rref(A) = I
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Summary
For a square matrix A, the following statements are
equivalent:

det(A) = 0

A does not have an inverse

The system Ax = 0 has many solutions
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Summary
Determinants of n × n matrices obey the following algebraic
rules:

det(AB) = det(A) · det(B)

det(A + B) may not equal det(A)+det(B)

det(A−1) = 1/ det(A)

det(cA) = cn det(A) for any constant c
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