Development of 2x2 Determinants

Gene Quinn (from Carlos Curley's notes)

Inverses

A real number $A \in \mathbb{R}$ has a multiplicative inverse if and only if:

$$
a \neq 0
$$

in which case $a^{-1}=1 / a$.

Inverses

A real number $A \in \mathbb{R}$ has a multiplicative inverse if and only if:

$$
a \neq 0
$$

in which case $a^{-1}=1 / a$.
We would like to generalize this concept to the set of square matrices:

We want to associate a single real number d with a square matrix in such a way that A has a matrix inverse if and only if:

$$
d \neq 0
$$

Determinants

More precisely, for an $n \times n$ square matrix A, we want to find a real-valued function of the n^{2} real numbers that comprise A :

$$
f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}=f\left(a_{11}, \ldots, a_{n n}\right)
$$

which we will call the determinant of A and denote by $\operatorname{det}(A)$, with the following property:
A has an inverse if and only if

$$
\operatorname{det}(A) \neq 0
$$

The 2×2 Case

Our first task will be to prove that such a function exists.

The 2×2 Case

Our first task will be to prove that such a function exists.
One way to prove that something exists is to find it.
We'll start by finding such a function for all 2×2 matrices.

The 2×2 Case

Our first task will be to prove that such a function exists.
One way to prove that something exists is to find it.
We'll start by finding such a function for all 2×2 matrices.
Suppose A is an invertible 2×2 matrix:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

The 2×2 Case

Now let's find A^{-1}.
As usual, we form an augmented matrix with A and I_{2},

$$
\left[\begin{array}{ll:ll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

The 2×2 Case

Now let's find A^{-1}.
As usual, we form an augmented matrix with A and I_{2},

$$
\left[\begin{array}{ll:ll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

We now perform row operations to transform the left half of the augmented matrix to I_{2}, and the right half becomes A^{-1}.

The 2×2 Case

$$
\left[\begin{array}{ll:ll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

Assuming $a \neq 0$, we multiply the first row by $1 / a$ to get a leading 1 :

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

The 2×2 Case

$$
\left[\begin{array}{ll:ll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

Assuming $a \neq 0$, we multiply the first row by $1 / a$ to get a leading 1:

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

(If $a=0$, we have to interchange rows and divide by c)

The 2×2 Case

Now add $-c$ times the first row to the second:

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

The 2×2 Case

Now add $-c$ times the first row to the second:

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

The result is:

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & d-c \frac{b}{a} & -c \frac{1}{a} & 1
\end{array}\right]
$$

The 2×2 Case

With a bit of simplification,

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & d-c \frac{b}{a} & -c \frac{1}{a} & 1
\end{array}\right]
$$

becomes

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & \frac{a d-b c}{a} & \frac{-c}{a} & 1
\end{array}\right]
$$

The 2×2 Case

With a bit of simplification,

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & d-c \frac{b}{a} & -c \frac{1}{a} & 1
\end{array}\right]
$$

becomes

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & \frac{a d-b c}{a} & \frac{-c}{a} & 1
\end{array}\right]
$$

Normally at this point we multiply the second row by the reciprocal of

$$
\frac{a d-b c}{a}
$$

to obtain a leading 1.

The 2×2 Case

However, note that if

$$
\frac{a d-b c}{a}=0 \quad \Rightarrow \quad a d-b c=0
$$

it is impossible to do this.

The 2×2 Case

However, note that if

$$
\frac{a d-b c}{a}=0 \quad \Rightarrow \quad a d-b c=0
$$

it is impossible to do this.
In this case, we can never reduce the left half of the augmented matrix to I_{2}.

The 2×2 Case

Assuming $a d-b c \neq 0$, we multiply the second row by $a /(a d-b c)$ to get a leading 1 :

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & \frac{a d-b c}{a} & \frac{-c}{a} & 1
\end{array}\right]
$$

The 2×2 Case

Assuming $a d-b c \neq 0$, we multiply the second row by $a /(a d-b c)$ to get a leading 1 :

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & \frac{a d-b c}{a} & \frac{-c}{a} & 1
\end{array}\right]
$$

The result is

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & 1 & \frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

The 2×2 Case

Finally we complete the reduction by adding $-b / a$ times the second row to the first:

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & 1 & \frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

The 2×2 Case

Finally we complete the reduction by adding $-b / a$ times the second row to the first:

$$
\left[\begin{array}{cc:cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & 1 & \frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

The right half of the augmented matrix is now A^{-1} :

$$
\left[\begin{array}{cc:cc}
1 & 0 & \frac{d}{a d-b c} & \frac{-b}{a-b c} \\
0 & 1 & \frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

The 2×2 Case

Since we can only complete the reduction of a 2×2 matrix A when $a d-b c=0$, we can say that:

A 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

has an inverse if and only if

$$
a d-b c=0
$$

The 2×2 Case

Since we can only complete the reduction of a 2×2 matrix A when $a d-b c=0$, we can say that:

A 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

has an inverse if and only if

$$
a d-b c=0
$$

In this case,

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

The 2×2 Case

In light of the previous example for a 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

we define the determinant of A, denoted by $\operatorname{det}(A)$, to be

$$
\operatorname{det}(A)=a d-b c
$$

Properties of the Determinant

Property 1:

$$
\operatorname{det}\left(I_{2}\right)=\operatorname{det}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=1
$$

Properties of the Determinant

Property 1:

$$
\operatorname{det}\left(I_{2}\right)=\operatorname{det}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=1
$$

Proof of Property 1: Directly from the definition of $\operatorname{det}(A)$, if

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

then

$$
\operatorname{det}(A)=a d-b c=1 \cdot 1-0 \cdot 0=1
$$

Properties of the Determinant

Property 2: If a 2×2 matrix A is upper triangular,

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]=a d
$$

(The determinant is the product of the diagonal entries.)

Properties of the Determinant

Property 2: If a 2×2 matrix A is upper triangular,

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]=a d
$$

(The determinant is the product of the diagonal entries.)
Proof of Property 2: Directly from the definition of $\operatorname{det}(A)$, if

$$
A=\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]
$$

then

$$
\operatorname{det}(A)=a d-b c=a d-b \cdot 0=a d
$$

Properties of the Determinant

Note that the determinant is also the product of the diagonal entries when A is lower triangular,

$$
\operatorname{det}\left[\begin{array}{ll}
a & 0 \\
c & d
\end{array}\right]=a d
$$

or diagonal:

$$
\operatorname{det}\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]=a d
$$

Properties of the Determinant

Note that the determinant is also the product of the diagonal entries when A is lower triangular,

$$
\operatorname{det}\left[\begin{array}{ll}
a & 0 \\
c & d
\end{array}\right]=a d
$$

or diagonal:

$$
\operatorname{det}\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]=a d
$$

The proof of these statements is similar to the proof for the upper triangular case.

Properties of the Determinant

Property 3: If a 2×2 matrix B is obtained from a 2×2 matrix A by adding a multiple of the first row to the second, then the determinants are the same:

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

Properties of the Determinant

Property 3: If a 2×2 matrix B is obtained from a 2×2 matrix A by adding a multiple of the first row to the second, then the determinants are the same:

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

Proof of Property 3: Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Properties of the Determinant

Form B by adding k times the first row of A to the second:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
B=\left[\begin{array}{cc}
a & b \\
c+k a & d+k b
\end{array}\right]
\end{gathered}
$$

Properties of the Determinant

Form B by adding k times the first row of A to the second:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
B=\left[\begin{array}{cc}
a & b \\
c+k a & d+k b
\end{array}\right]
\end{gathered}
$$

Directly from the definition,

$$
\begin{aligned}
\operatorname{det}(B) & =\operatorname{det}\left[\begin{array}{cc}
a & b \\
c+k a & d+k b
\end{array}\right]=a(d+k b)-b(c+k a) \\
& =a d+a b k-b c-a b k=a d-b c=\operatorname{det}(A)
\end{aligned}
$$

Properties of the Determinant

A similar argument can be used to establish that adding a multiple of the second row to the first leaves the determinant unchanged.

Properties of the Determinant

A similar argument can be used to establish that adding a multiple of the second row to the first leaves the determinant unchanged.
So, we may make the more general statement:
Property 3: If a 2×2 matrix B is obtained from a 2×2 matrix A by adding a multiple of one row to another, the determinant is unchanged; that is,

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

Properties of the Determinant

Property 4: If a 2×2 matrix B is obtained by interchanging the rows of a 2×2 matrix A,

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

(Interchanging rows changes the sign of the determinant)

Properties of the Determinant

Property 4: If a 2×2 matrix B is obtained by interchanging the rows of a 2×2 matrix A,

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

(Interchanging rows changes the sign of the determinant) Proof of Property 4: Directly from the definition, if

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]
$$

then

$$
\operatorname{det}(B)=c b-a d=-(a d-b c)=-\operatorname{det}(A)
$$

Properties of the Determinant

Property 5: If a 2×2 matrix B is obtained by multiplying a row of a 2×2 matrix A by a constant k then,

$$
\operatorname{det}(B)=k \cdot \operatorname{det}(A)
$$

(Multiplying a row by k multiplies the determinant by k)

Properties of the Determinant

Property 5: If a 2×2 matrix B is obtained by multiplying a row of a 2×2 matrix A by a constant k then,

$$
\operatorname{det}(B)=k \cdot \operatorname{det}(A)
$$

(Multiplying a row by k multiplies the determinant by k)
Proof of Property 5: Directly from the definition, if

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
k a & k b \\
c & d
\end{array}\right]
$$

then

$$
\operatorname{det}(B)=a d k-b c k=k(a d-b c)=k \cdot \operatorname{det}(A)
$$

Properties of the Determinant

A similar argument will show the same result if the second row is multiplied by k.

Determinants of Higher Order Matrice

The results we obtained for 2×2 matrices generalize to $n \times n$ matrices.

Determinants of Higher Order Matrice

The results we obtained for 2×2 matrices generalize to $n \times n$ matrices.

More precisely,

- It is possible to define $\operatorname{det}(A)$ for a square matrix of any dimension n (The exact definition depends on n)
- Properties 1-5 of $\operatorname{det}(A)$ hold for $n=2,3,4 \ldots$

Summary

For a square matrix A, the following statements are equivalent:

- $\operatorname{det}(A) \neq 0$
- A has an inverse
- The system $A x=b$ has exactly one solution for any vector $b \in \mathbb{R}^{n}$ (including $\overrightarrow{0}$)
- $\operatorname{rref}(A)=I$

Summary

For a square matrix A, the following statements are equivalent:

- $\operatorname{det}(A)=0$
- A does not have an inverse
- The system $A x=0$ has many solutions

Summary

Determinants of $n \times n$ matrices obey the following algebraic rules:

- $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$
- $\operatorname{det}(A+B)$ may not equal $\operatorname{det}(A)+\operatorname{det}(B)$
- $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$
- $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$ for any constant c

