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Gauss-Jordan Elimination

Consider the following system of linear equations:
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x + y + z = 6

3x + 2y − 2z = 1

−x − y + z = 0
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Gauss-Jordan Elimination

Consider the following system of linear equations:
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x + y + z = 6

3x + 2y − 2z = 1
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The matrix






1 1 1 6

3 2 −2 1

−1 −1 1 0







which contains only the numerical information in the system, is called

the augmented matrix :
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Systems of Linear Equations

It is easier to work with the augmented matrix (on the right) than the
system itself because we aviod copying a lot of repetitive notation:
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3x + 2y − 2z = 1
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1 1 1 6

3 2 −2 1

−1 −1 1 0







We obtain the same solution whether we work with the equations or
the augmented matrix.
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Systems of Linear Equations

It is easier to work with the augmented matrix (on the right) than the
system itself because we aviod copying a lot of repetitive notation:
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1 1 1 6

3 2 −2 1

−1 −1 1 0







We obtain the same solution whether we work with the equations or
the augmented matrix.

The following matrix, which contains only the coefficients of the
variables in the system, is called the coefficient matrix :







1 1 1

3 2 −2

−1 −1 1
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Row Reduction

Think of a pointer or cursor set to the leftmost element of the first row
of the augmented matrix. The entry to which the cursor points will be
called the cursor entry.

In the procedure, the row and column containing the cursor will be
called the cursor row and cursor column, respectively.

• Step 1 : If the cursor entry is zero, swap the cursor row with the
first row below it that has a nonzero entry in the cursor column.
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Row Reduction

Think of a pointer or cursor set to the leftmost element of the first row
of the augmented matrix. The entry to which the cursor points will be
called the cursor entry.

In the procedure, the row and column containing the cursor will be
called the cursor row and cursor column, respectively.

• Step 1 : If the cursor entry is zero, swap the cursor row with the
first row below it that has a nonzero entry in the cursor column.

• Step 2 : Divide each entry in the cursor row by the cursor entry, so
that the cursor entry becomes 1.
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Row Reduction

Think of a pointer or cursor set to the leftmost element of the first row
of the augmented matrix. The entry to which the cursor points will be
called the cursor entry.

In the procedure, the row and column containing the cursor will be
called the cursor row and cursor column, respectively.

• Step 1 : If the cursor entry is zero, swap the cursor row with the
first row below it that has a nonzero entry in the cursor column.

• Step 2 : Divide each entry in the cursor row by the cursor entry, so
that the cursor entry becomes 1.

• Step 3 : Eliminate all other entries in the cursor column by
subtracting suitable multiples of the cursor row from the other
rows.
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Row Reduction

Think of a pointer or cursor set to the leftmost element of the first row
of the augmented matrix. The entry to which the cursor points will be
called the cursor entry.

In the procedure, the row and column containing the cursor will be
called the cursor row and cursor column, respectively.

• Step 1 : If the cursor entry is zero, swap the cursor row with the
first row below it that has a nonzero entry in the cursor column.

• Step 2 : Divide each entry in the cursor row by the cursor entry, so
that the cursor entry becomes 1.

• Step 3 : Eliminate all other entries in the cursor column by
subtracting suitable multiples of the cursor row from the other
rows.

• Step 4 : Move the cursor down one row, and to the right until it is
pointing to the leftmost nonzero entry in the new cursor row. Now
repeat from Step 1.
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Row Reduction

We continue repeating steps 1-4 of the Row Reduction procedure until
we run out of columns, at which point the process terminates.

Now the augmented matrix is in reduced row-echelon form, or rref for
short, and if M is the original augmented matrix and E is the final
augmented matrix, we write

E = rref(M)
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Row Reduction

We continue repeating steps 1-4 of the Row Reduction procedure until
we run out of columns, at which point the process terminates.

Now the augmented matrix is in reduced row-echelon form, or rref for
short, and if M is the original augmented matrix and E is the final
augmented matrix, we write

E = rref(M)

A matrix is said to be in reduced row-echelon form if the following
conditions are true:

• a) If a row has any nonzero entries, the leftmost of them is 1, and
is called the leading 1 or pivot in this row.

• b) If a column contains a leading 1 or pivot, then all other entries
in that column are zero.

• c) If a row contains a leading 1 or pivot, then each row above it
contains a leading 1 farther to the left.
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Gauss-Jordan Elimination

In summary, our procedure for solving a system of linear equations is:

• write down the linear system as an augmented matrix
• perform row reduction to reduce the augmented matrix to reduced

row-echelon form
• determine if the system is consistent from the rref (i.e., no 0 = 1

equation in the rref )
• read the solution(s) from the rref
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Gauss-Jordan Elimination

In summary, our procedure for solving a system of linear equations is:

• write down the linear system as an augmented matrix
• perform row reduction to reduce the augmented matrix to reduced

row-echelon form
• determine if the system is consistent from the rref (i.e., no 0 = 1

equation in the rref )
• read the solution(s) from the rref

This procedure for solving a system of linear equations is called
Gauss-Jordan Elimination .
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