Cramer's Rule

Gene Quinn

Linear Systems

All of the methods we have seen for solving a linear system

$$
A \vec{x}=\vec{b}
$$

are computational algorithms.

Linear Systems

All of the methods we have seen for solving a linear system

$$
A \vec{x}=\vec{b}
$$

are computational algorithms.
We now introduce a method called Cramer's rule that gives the solution of a linear system in closed form.

Linear Systems

All of the methods we have seen for solving a linear system

$$
A \vec{x}=\vec{b}
$$

are computational algorithms.
We now introduce a method called Cramer's rule that gives the solution of a linear system in closed form.

Cramer's rule is mainly useful for obtaining theoretical results, because it is more expensive computationally than alternatives such as Gauss-Jordan.

Cramer's Rule

Cramer's Rule: Given a linear system

$$
A \vec{x}=\vec{b}
$$

where A is an invertible $n \times n$ matrix, the $i^{t h}$ component of the solution vector \vec{x} is:

$$
x_{i}=\frac{\operatorname{det}\left(A_{\vec{b}, i}\right)}{\operatorname{det}(A)}
$$

where

$$
A_{\vec{b}, i}
$$

is the matrix A with its $i^{\text {th }}$ column replaced by \vec{b}.

Cramer's Rule

Example: Solve the following linear system $A \vec{x}=\vec{b}$ with Cramer's rule:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

Cramer's Rule

Example: Solve the following linear system $A \vec{x}=\vec{b}$ with Cramer's rule:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

In this case,

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \quad A_{\vec{b}, 1}=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right] \quad A_{\vec{b}, 2}=\left[\begin{array}{ll}
1 & 3 \\
1 & 5
\end{array}\right]
$$

Cramer's Rule

Example: Solve the following linear system $A \vec{x}=\vec{b}$ with Cramer's rule:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

In this case,

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \quad A_{\vec{b}, 1}=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right] \quad A_{\vec{b}, 2}=\left[\begin{array}{ll}
1 & 3 \\
1 & 5
\end{array}\right]
$$

and

$$
\operatorname{det}(A)=1 \quad \operatorname{det}\left(A_{\vec{b}, 1}\right)=1 \quad \operatorname{det}\left(A_{\vec{b}, 2}\right)=2
$$

Cramer's Rule

The solution of the system is:

$$
x_{1}=\frac{\operatorname{det}\left(A_{\vec{b}, 1}\right)}{\operatorname{det}(A)}=\frac{1}{1}=1
$$

and

$$
x_{2}=\frac{\operatorname{det}\left(A_{\vec{b}, 2}\right)}{\operatorname{det}(A)}=\frac{2}{1}=2
$$

Cramer's Rule

The solution of the system is:

$$
x_{1}=\frac{\operatorname{det}\left(A_{\vec{b}, 1}\right)}{\operatorname{det}(A)}=\frac{1}{1}=1
$$

and

$$
x_{2}=\frac{\operatorname{det}\left(A_{\vec{b}, 2}\right)}{\operatorname{det}(A)}=\frac{2}{1}=2
$$

It is easily verified that

$$
A \vec{x}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\vec{b}
$$

The Classical Adjoint

Definition: The classical adjoint of an $n \times n$ matrix A is the matrix whose $(i j)^{t h}$ entry is

$$
(-1)^{i+j} \operatorname{det}\left(A_{j i}\right)
$$

The Classical Adjoint

Definition: The classical adjoint of an $n \times n$ matrix A is the matrix whose $(i j)^{t h}$ entry is

$$
\begin{gathered}
(-1)^{i+j} \operatorname{det}\left(A_{j i}\right) \\
\operatorname{adj}(A)=\left[\begin{array}{cccc}
(-1)^{2} A_{11} & (-1)^{3} A_{21} & \cdots & (-1)^{n+1} A_{n 1} \\
(-1)^{3} A_{12} & (-1)^{4} A_{22} & \cdots & (-1)^{n+2} A_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
(-1)^{n+1} A_{1 n} & (-1)^{n+2} A_{2 n} & \cdots & (-1) n+n A_{n n}
\end{array}\right]
\end{gathered}
$$

The Classical Adjoint

If an $n \times n$ matrix A is invertible, we can express A^{-1} in closed form as

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

The Classical Adjoint

Note that the $(i j)^{t h}$ entry of $\operatorname{adj}(A)$ is the $(j i)^{t h}$ minor of A,

$$
(-1)^{i+j} \operatorname{det}\left(A_{j i}\right)
$$

(Not the $(i j)^{\text {th }}$ minor)

The Classical Adjoint

Note that the $(i j)^{t h}$ entry of $\operatorname{adj}(A)$ is the $(j i)^{\text {th }}$ minor of A,

$$
(-1)^{i+j} \operatorname{det}\left(A_{j i}\right)
$$

(Not the $(i j)^{\text {th }}$ minor)
For example,

$$
\begin{aligned}
& \operatorname{adj}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\end{aligned}
$$

