Name:

1) A continuous probability distribution is defined by:

$$
f(x)=k \cdot\left(4-x^{2}\right) \quad-2 \leq x \leq 2
$$

a) Determine the value of k that makes f a valid probability distribution
b) If X is a random variable having this density function, find $E(X)$.
c) Find the variance of X.
d) Find the cumulative distribution function $F(x)$.
e) Find probability that $X<1$.
2) IQ tests are scaled so that individual scores have a normal distribution with a mean of 100 and an standard deviation of 15 .
a) What is the probability that a randomly chosen individual will score less than 128 on the IQ test?
b) What is the probability that a randomly chosen individual will score more than 95 on the IQ test?
c) Find the probability that a randomly chosen individual will score between 90 and 110 on the test.
d) Find the probability that a randomly chosen individual will score less than 85 or more than 115 on the test.
e) Find the $98^{\text {th }}$ percentile of the distribution of IQ scores.
3) A random sample of size $n=50$ is chosen from a population with mean $\mu=78$ and variance $\sigma=30$.
a) Find the expected value of the sample mean \bar{X},

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{50} x_{i}
$$

b) What is the variance of \bar{X} ?
c) Find the approximate probability that the mean will be between 80 and 85 .
d) Find the approximate probability that a randomly chosen individual will score less than 75 or more than 81 .
e) Find the approximate $75^{t h}$ percentile of the distribution of \bar{X}.
4) A random sample of size $n=150$ is chosen from a population with finite mean and variance. The sample mean is $\bar{X}=15.3$ and the sample standard deviation is $s=3.1$.
a) Find an approximate 95% confidence interval for the population mean μ.
b) Find an approximate 99% confidence interval for the population mean μ.
5) A random sample of size $n=20$ is chosen from a normal population. The sample mean is $\bar{X}=175.3$ and the sample standard deviation is $s=12.1$.
a) Find a 95% confidence interval for the population mean μ.
b) Find a 99% confidence interval for the population mean μ.
6) SAT scores are standardized to have a normal distribution with mean $\mu=500$ and standard deviation $\sigma=100$. Suppose a sample of 200 students from a large school district has a mean of 491.3. Test the hypothesis that the population mean for the school district is 500 against the alternative that it is less than 500 at the $\alpha=.05$ level.
7) An exit poll surveys 800 voters and finds that 483 voted for candidate A. The network will call the election in favor of the other candidate B if the null hypothesis H_{0} that the proportion of voters favoring candidate A is 0.5 can be rejected at the $\alpha=0.01$ level against the alternative hypothesis that the proportion is less than 0.5 . Should the network call the election in favor of candidate B based on the exit poll?
8) A random sample of size $n=25$ is chosen from a production run of gears. The mean gear diameter is $\bar{X}=181.4 \mathrm{~mm}$ and the sample standard deviation is $s=0.4 \mathrm{~mm}$. If the specification calls for a diameter of 180 mm , test the hypothesis that the mean diameter for the run is 180 mm against the alternative that it is not equal to 180 mm at $\alpha=0.01$.

