Probability of Unions

By the union of two events A and B, we mean the set of all possible outcomes that belong to one or both events.

Probability of Unions

By the union of two events A and B, we mean the set of all possible outcomes that belong to one or both events.
Consider the experiment of drawing a card from a shuffled deck of 52 .

The sample space \mathcal{S} for this experiment has 52 outcomes, one for each card in the deck.

Probability of Unions

By the union of two events A and B, we mean the set of all possible outcomes that belong to one or both events.
Consider the experiment of drawing a card from a shuffled deck of 52 .

The sample space \mathcal{S} for this experiment has 52 outcomes, one for each card in the deck.

Suppose A represents the event "a queen is drawn".

Probability of Unions

By the union of two events A and B, we mean the set of all possible outcomes that belong to one or both events.
Consider the experiment of drawing a card from a shuffled deck of 52 .

The sample space \mathcal{S} for this experiment has 52 outcomes, one for each card in the deck.

Suppose A represents the event "a queen is drawn".
A is a subset of \mathcal{S} with only four elements, the four queens.

Probability of Unions

By the union of two events A and B, we mean the set of all possible outcomes that belong to one or both events.
Consider the experiment of drawing a card from a shuffled deck of 52 .

The sample space \mathcal{S} for this experiment has 52 outcomes, one for each card in the deck.

Suppose A represents the event "a queen is drawn".
A is a subset of \mathcal{S} with only four elements, the four queens.
Now let B represent the event "a black card drawn".

Probability of Unions

By the union of two events A and B, we mean the set of all possible outcomes that belong to one or both events.
Consider the experiment of drawing a card from a shuffled deck of 52 .

The sample space \mathcal{S} for this experiment has 52 outcomes, one for each card in the deck.

Suppose A represents the event "a queen is drawn".
A is a subset of \mathcal{S} with only four elements, the four queens.
Now let B represent the event "a black card drawn".
B is a subset of \mathcal{S} with 26 elements, the black cards.

Probability of Unions

The third of the Kolmogorov axioms states that the probabilities of unions of disjoint events, meaning events with no outcomes in common, are just the sum of the probabilities of the individual events.

Probability of Unions

The third of the Kolmogorov axioms states that the probabilities of unions of disjoint events, meaning events with no outcomes in common, are just the sum of the probabilities of the individual events.
We have to be careful because this is only true for disjoint events, that is, events with entirely distinct outcomes.

In the card experiment, events A (queen) and B (black card) are not disjoint, because there are cards that belong to both events: the two black queens.

Probability of Unions

The third of the Kolmogorov axioms states that the probabilities of unions of disjoint events, meaning events with no outcomes in common, are just the sum of the probabilities of the individual events.
We have to be careful because this is only true for disjoint events, that is, events with entirely distinct outcomes.

In the card experiment, events A (queen) and B (black card) are not disjoint, because there are cards that belong to both events: the two black queens.

This means we have to use the more general formula on page 55,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Probability of Unions

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

The probability of the event $A \cup B$, which would be described as "A black card or a queen is drawn"

Probability of Unions

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

The probability of the event $A \cup B$, which would be described as "A black card or a queen is drawn"
is expressed in terms of the probabilities of three events:
$A \quad$ A queen is drawn 4 outcomes
$B \quad$ A black card is drawn 26 outcomes
$A \cap B \quad$ A black queen is drawn 2 outcomes

Probability of Unions

We can reasonably assume that the deck is well shuffled, so every card has the same chance of being chosen: $1 / 52$.

Probability of Unions

We can reasonably assume that the deck is well shuffled, so every card has the same chance of being chosen: $1 / 52$.

Based on this assumption, we can assume that the probability of any event is simply $1 / 52$ times the number of outcomes contained in the event:

$$
P(E)=\frac{N(E)}{52}
$$

Using this principle, we can compute the probabilities of our three events

A	queen	4 outcomes	$P(A)=4 / 52$
B	black card	26 outcomes	$P(B)=26 / 52$
$A \cap B$	black queen	2 outcomes	$P(A \cap B)=2 / 52$

Probability of Unions

If we think about the ways the outcome "A queen or a black card" can occur, we get:

One of the black cards 26 cards
One of the red queens 2 cards
28 cards

Probability of Unions

If we think about the ways the outcome "A queen or a black card" can occur, we get:

One of the black cards 26 cards
One of the red queens 2 cards
28 cards
Since there are 28 cards contained in the event "A black card or a queen", the probability should be:

$$
P(A \cup B)=\frac{28}{52}
$$

Probability of Unions

Now returning to

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

we can substitute the probabilities for the right hand side:

$$
P(A)=\frac{4}{52} \quad P(B)=\frac{26}{52} \quad P(A \cap B)=\frac{2}{52}
$$

Probability of Unions

Now returning to

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

we can substitute the probabilities for the right hand side:

$$
P(A)=\frac{4}{52} \quad P(B)=\frac{26}{52} \quad P(A \cap B)=\frac{2}{52}
$$

The result is:

$$
P(A \cup B)=\frac{4}{52}+\frac{26}{52}-\frac{2}{52}=\frac{28}{52}
$$

Probability of Unions

Now returning to

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

we can substitute the probabilities for the right hand side:

$$
P(A)=\frac{4}{52} \quad P(B)=\frac{26}{52} \quad P(A \cap B)=\frac{2}{52}
$$

The result is:

$$
P(A \cup B)=\frac{4}{52}+\frac{26}{52}-\frac{2}{52}=\frac{28}{52}
$$

This is the same answer we arrived at by counting the number of outcomes in the event.

