Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

The following discrete probability distributions arise from this model:

If the number of trials n is fixed in advance, the number of successes X has a binomial distribution

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

The following discrete probability distributions arise from this model:

If the number of trials n is fixed in advance, the number of successes X has a binomial distribution

If trials continue indefinitely until the first success is obtained, the number of failures obtained X has a geometric distribution.

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

The following discrete probability distributions arise from this model:

If the number of trials n is fixed in advance, the number of successes X has a binomial distribution

If trials continue indefinitely until the first success is obtained, the number of failures obtained X has a geometric distribution.

If trials continue indefinitely until the $r^{\text {th }}$ success is obtained, the number of failures obtained X has a negative binomial distribution.

The Poisson Distribution

The probability mass function is:

$$
f(x)=n b(x ; r, p)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x} \quad x=0,1,2,3, \ldots
$$

The Poisson Distribution

The probability mass function is:

$$
f(x)=n b(x ; r, p)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x} \quad x=0,1,2,3, \ldots
$$

$$
E(X)=\frac{r(1-p)}{p} \quad V(X)=\frac{r(1-p)}{p^{2}}
$$

The Poisson Distribution

The probability mass function is:

$$
f(x)=n b(x ; r, p)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x} \quad x=0,1,2,3, \ldots
$$

$$
E(X)=\frac{r(1-p)}{p} \quad V(X)=\frac{r(1-p)}{p^{2}}
$$

Computation:

Value
R
$P(X=x) \quad \operatorname{dnbinom}(x, r, p) \quad=\operatorname{NEGBINOMDIST}(x, r, p)$
$P(X \leq x) \quad$ pnbinom (x, r, p)

Spreadsheet

)

The Negative Binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a negative binomial experiment with $r=3$ and probability of success $p=0.4$:
$x<-$ rnbinom(1000000,3,0.4)

The Negative Binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a negative binomial experiment with $r=3$ and probability of success $p=0.4$:
$x<-r n b i n o m(1000000,3,0.4)$
Now plot a histogram of the results:
$\operatorname{hist}(x)$

The Negative Binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a negative binomial experiment with $r=3$ and probability of success $p=0.4$:
$x<-r n b i n o m(1000000,3,0.4)$
Now plot a histogram of the results:
hist(x)
To get a table of the results enter table(x)

The Negative Binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a negative binomial experiment with $r=3$ and probability of success $p=0.4$:
$x<-r n b i n o m(1000000,3,0.4)$
Now plot a histogram of the results:
hist(x)
To get a table of the results enter table(x)

The results through $X=6$ should look something like:

0	1	2	3	4	5	
63784	115545	138570	138259	124481	103801	8349

The Negative Binomial Distribution

63784115545138570138259124481103801834
Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dnbinom($0,3,0.4$)

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$63784115545138570 \quad 138259124481 \quad 103801834$
Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dnbinom ($0,3,0.4$)
The result should be something like
[1] 0.064

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

63784115545138570138259124481103801834 Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dnbinom ($0,3,0.4$)
The result should be something like
[1] 0.064
To get the probability that $X=1$ enter dnbinom(1,3,0.4)

The Negative Binomial Distribution

0	1	2	3	4	5

63784115545138570138259124481103801834 Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dnbinom ($0,3,0.4$)
The result should be something like
[1] 0.064
To get the probability that $X=1$ enter dnbinom($1,3,0.4$)

This time the results should look something like:
[1] 0.1152

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

63784115545138570138259124481103801834 Next compute the probability that $X=2$:
dnbinom(2,3,0.4)

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

63784115545138570138259124481103801834 Next compute the probability that $X=2$:
dnbinom(2,3,0.4)
The result should be something like
[1] 0.13824

The Negative Binomial Distribution

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

63784115545138570138259124481103801834 Next compute the probability that $X=2$:
dnbinom($2,3,0.4$)
The result should be something like [1] 0.13824

To get the probability that $X=5$ enter dnbinom($5,3,0.4$)

The Negative Binomial Distribution

0	1	2	3	4	5

$63784115545138570138259124481 \quad 103801834$ Next compute the probability that $X=2$:
dnbinom(2,3,0.4)
The result should be something like
[1] 0.13824
To get the probability that $X=5$ enter dnbinom $(5,3,0.4)$

This time the results should look something like:
[1] 0.10451

The Negative Binomial Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=\frac{r(1-p)}{p}=\frac{3(.6)}{.4}=4.5
$$

The Negative Binomial Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=\frac{r(1-p)}{p}=\frac{3(.6)}{.4}=4.5
$$

To compute the sample mean \bar{x}, enter mean(x)

The Negative Binomial Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=\frac{r(1-p)}{p}=\frac{3(.6)}{.4}=4.5
$$

To compute the sample mean \bar{x}, enter mean(x) The result should be something like [1] 4.499121

The Negative Binomial Distribution

The variance $V(X)$ in this case is:

$$
V(X)=\frac{r(1-p)}{p^{2}}=\frac{3(.6)}{.4^{2}}=11.25
$$

The Negative Binomial Distribution

The variance $V(X)$ in this case is:

$$
V(X)=\frac{r(1-p)}{p^{2}}=\frac{3(.6)}{.4^{2}}=11.25
$$

To compute the sample variance s^{2}, enter $\operatorname{var}(x)$

The Negative Binomial Distribution

The variance $V(X)$ in this case is:

$$
V(X)=\frac{r(1-p)}{p^{2}}=\frac{3(.6)}{.4^{2}}=11.25
$$

To compute the sample variance s^{2}, enter
$\operatorname{var}(x)$ The result should be something like
[1] 11.2477

The Negative Binomial Distribution

A fair coin is tossed until the second heads comes up.
Find the probability that the second heads comes up on the fifth toss ($x=3$).

The Negative Binomial Distribution

A fair coin is tossed until the second heads comes up.
Find the probability that the second heads comes up on the fifth toss ($x=3$).

Solution: 0.125

The Negative Binomial Distribution

A fair coin is tossed until the second heads comes up.
Find the probability that the second heads comes up on the fifth toss ($x=3$).

Solution: 0.125
dnbinom(3, 2, 0.5)

The Geometric Distribution

A fair coin is tossed until the fourth heads comes up.
Find the probability that the fourth heads comes up on the seventh toss or sooner $x \leq 3$.

The Geometric Distribution

A fair coin is tossed until the fourth heads comes up.
Find the probability that the fourth heads comes up on the seventh toss or sooner $x \leq 3$.

Solution: 0.5

The Geometric Distribution

A fair coin is tossed until the fourth heads comes up.
Find the probability that the fourth heads comes up on the seventh toss or sooner $x \leq 3$.

Solution: 0.5
pnbinom(3, 4, 0.5)

The Negative Binomial Distribution

A fair coin is tossed until the fifth heads comes up.
Find the probability that this takes more than 8 tosses $(x>3)$

The Negative Binomial Distribution

A fair coin is tossed until the fifth heads comes up.
Find the probability that this takes more than 8 tosses $(x>3)$

Solution: 0.63672

The Negative Binomial Distribution

A fair coin is tossed until the fifth heads comes up.
Find the probability that this takes more than 8 tosses $(x>3)$

Solution: 0.63672
1 - pnbinom $(3,5,0.5)$

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that this takes 9 or more tosses $(x>5)$

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that this takes 9 or more tosses $(x>5)$
Solution: 0.22656

The Negative Binomial Distribution

A fair coin is tossed until the third heads comes up.
Find the probability that this takes 9 or more tosses $(x>5)$
Solution: 0.22656
$1-\operatorname{pnbinom}(4,3,0.5) \quad$ or $=1-\operatorname{GEOMDIST}(7,0.5, T R U E)$
(Spreadsheet function is for GNUMERIC. EXCEL does not have this function)

The Negative Binomial Distribution

A baseball player has a .300 batting average.
Find the probability that their second hit in a game occurs on the $5^{\text {th }}$ time at bat. $(x=3)$

The Negative Binomial Distribution

A baseball player has a .300 batting average.
Find the probability that their second hit in a game occurs on the $5^{\text {th }}$ time at bat. $(x=3)$

Solution: 0.12348

The Negative Binomial Distribution

A baseball player has a .300 batting average.
Find the probability that their second hit in a game occurs on the $5^{\text {th }}$ time at bat. $(x=3)$

Solution: 0.12348
dnbinom(3, 2, 0.3)

